Quasi-valuation maps based on positive implicative ideals in BCK-algebras
Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 65-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of PI-quasi-valuation maps of a BCK-algebra is introduced, and related properties are investigated. The relationship between an I-quasi-valuation map and a PI-quasi-valuation map is examined. Conditions for an I-quasi-valuation map to be a PI-quasi-valuation map are provided, and conditions for a real-valued function on a BCK-algebra to be a quasi-valuation map based on a positive implicative ideal are founded. The extension property for a PI-quasi-valuation map is established.
Keywords: (positive implicative) ideal
Mots-clés : S-quasi-valuation map, I-quasi-valuation map, PI-quasi-valuation map.
@article{ADM_2018_26_1_a6,
     author = {Young Bae Jun and Kyoung Ja Lee and Seok Zun Song},
     title = {Quasi-valuation maps based on positive implicative ideals in {BCK-algebras}},
     journal = {Algebra and discrete mathematics},
     pages = {65--75},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a6/}
}
TY  - JOUR
AU  - Young Bae Jun
AU  - Kyoung Ja Lee
AU  - Seok Zun Song
TI  - Quasi-valuation maps based on positive implicative ideals in BCK-algebras
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 65
EP  - 75
VL  - 26
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a6/
LA  - en
ID  - ADM_2018_26_1_a6
ER  - 
%0 Journal Article
%A Young Bae Jun
%A Kyoung Ja Lee
%A Seok Zun Song
%T Quasi-valuation maps based on positive implicative ideals in BCK-algebras
%J Algebra and discrete mathematics
%D 2018
%P 65-75
%V 26
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a6/
%G en
%F ADM_2018_26_1_a6
Young Bae Jun; Kyoung Ja Lee; Seok Zun Song. Quasi-valuation maps based on positive implicative ideals in BCK-algebras. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 65-75. https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a6/

[1] Y. S. Huang, $BCI$-algebra, Science Press, China, 2006

[2] Y. Imai and K. Iséki, “On axiom systems of propositional calculi. XIV”, Proc. Japan Acad., 42 (1966), 19–22 | DOI | MR | Zbl

[3] K. Iséki, “An algebra related with a propositional calculus”, Proc. Japan Acad., 42 (1966), 26–29 | DOI | MR | Zbl

[4] K. Iséki, “On BCI-algebras”, Math. Seminar Notes, 8 (1980), 125–130 | MR | Zbl

[5] K. Iséki and S. Tanaka, “An introduction to theory of BCK-algebras”, Math. Japonica, 23 (1978), 1–26 | MR | Zbl

[6] Y. B. Jun, S. Z. Song and E. H. Roh, Quasi-valuation maps on BCK/BCI-algebras, Filomat, submitted | MR

[7] J. Meng, Y. B. Jun, $BCK$-algebras, Kyungmoon Publisher, Seoul, 1994 | MR | Zbl

[8] J. Neggers, A. Dvurečenskij and H. S. Kim, “On $d$-fuzzy functions in $d$-algebras”, Found. Phys., 30 (2000), 1807–1816 | DOI | MR

[9] J. Neggers, Y. B. Jun, H. S. Kim, “On $d$-ideals in $d$-algebras”, Math. Slovaca, 49 (1999), 243–251 | MR | Zbl

[10] J. Neggers, H. S. Kim, “On $d$-algebras”, Math. Slovaca, 49 (1999), 19–26 | MR | Zbl

[11] L. A. Zadeh, “Toward a generalized theory of uncertainty (GTU)—an outline”, Inform. Sci., 172 (2005), 1–40 | DOI | MR | Zbl