Module decompositions via Rickart modules
Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 47-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module M has decompositions M=Soc(M)N and M=Rad(M)K where N and K are Rickart if and only if M is Soc(M)-inverse split and Rad(M)-inverse split, respectively. Right Soc()-inverse split left perfect rings and semiprimitive right hereditary rings are determined exactly. Also, some characterizations for a ring R which has a decomposition R=Soc(RR)I with I a hereditary Rickart module are obtained.
Mots-clés : Soc()-inverse split module, Rad()-inverse split module, Rickart module.
@article{ADM_2018_26_1_a5,
     author = {A. Harmanci and B. Ungor},
     title = {Module decompositions via {Rickart} modules},
     journal = {Algebra and discrete mathematics},
     pages = {47--64},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a5/}
}
TY  - JOUR
AU  - A. Harmanci
AU  - B. Ungor
TI  - Module decompositions via Rickart modules
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 47
EP  - 64
VL  - 26
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a5/
LA  - en
ID  - ADM_2018_26_1_a5
ER  - 
%0 Journal Article
%A A. Harmanci
%A B. Ungor
%T Module decompositions via Rickart modules
%J Algebra and discrete mathematics
%D 2018
%P 47-64
%V 26
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a5/
%G en
%F ADM_2018_26_1_a5
A. Harmanci; B. Ungor. Module decompositions via Rickart modules. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 47-64. https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a5/

[1] N. Agayev, S. Halicioglu, A. Harmanci, “On Rickart modules”, Bull. Iran. Math. Soc., 38:2 (2012), 433–445 | MR | Zbl

[2] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992 | MR | Zbl

[3] H. Bass, “Finitistic dimension and a homological generalization of semi-primary rings”, Trans. Amer. Math. Soc., 95 (1960), 466–488 | DOI | MR | Zbl

[4] G. F. Birkenmeier, J. K. Park, S. T. Rizvi, Extensions of Rings and Modules, Springer Science+Business Media, New York, 2013 | MR | Zbl

[5] N. V. Dung, D. V. Huynh, P. F. Smith, R. Wisbauer, Extending Modules, Research Notes in Math. Ser., 313, Pitman, 1994 | MR | Zbl

[6] R. Gordon, “Rings in which minimal left ideals are projective”, Pacific J. Math., 31 (1969), 679–692 | DOI | MR | Zbl

[7] A. Hattori, “A foundation of torsion theory for modules over general rings”, Nagoya Math. J., 17 (1960), 147–158 | DOI | MR | Zbl

[8] T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999 | MR | Zbl

[9] G. Lee, S. T. Rizvi, C. S. Roman, “Rickart modules”, Comm. Algebra, 38:11 (2010), 4005–4027 | DOI | MR | Zbl

[10] C. Lomp, “On semilocal modules and rings”, Comm. Algebra, 27:4 (1999), 1921–1935 | DOI | MR | Zbl

[11] S. Maeda, “On a ring whose principal right ideals generated by idempotents form a lattice”, J. Sci. Hiroshima Univ. Ser. A, 24 (1960), 509–525 | MR | Zbl

[12] N. H. McCoy, The Theory of Rings, Chelsea Publishing Co., New York, 1973 | MR | Zbl

[13] S. T. Rizvi, C. S. Roman, “Baer property of modules and applications”, Advances in Ring Theory, 2005, 225–241 | DOI | MR | Zbl

[14] B. Ungor, S. Halicioglu, A. Harmanci, “Modules in which inverse images of some submodules are direct summands”, Comm. Algebra, 44:4 (2016), 1496–1513 | DOI | MR | Zbl

[15] R. Wisbauer, Foundations of Module and Ring Theory Gordon and Breach Science Publishers, Philadelphia, PA, 1991 | MR