Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2018_26_1_a5, author = {A. Harmanci and B. Ungor}, title = {Module decompositions via {Rickart} modules}, journal = {Algebra and discrete mathematics}, pages = {47--64}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2018}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a5/} }
A. Harmanci; B. Ungor. Module decompositions via Rickart modules. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 47-64. https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a5/
[1] N. Agayev, S. Halicioglu, A. Harmanci, “On Rickart modules”, Bull. Iran. Math. Soc., 38:2 (2012), 433–445 | MR | Zbl
[2] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992 | MR | Zbl
[3] H. Bass, “Finitistic dimension and a homological generalization of semi-primary rings”, Trans. Amer. Math. Soc., 95 (1960), 466–488 | DOI | MR | Zbl
[4] G. F. Birkenmeier, J. K. Park, S. T. Rizvi, Extensions of Rings and Modules, Springer Science+Business Media, New York, 2013 | MR | Zbl
[5] N. V. Dung, D. V. Huynh, P. F. Smith, R. Wisbauer, Extending Modules, Research Notes in Math. Ser., 313, Pitman, 1994 | MR | Zbl
[6] R. Gordon, “Rings in which minimal left ideals are projective”, Pacific J. Math., 31 (1969), 679–692 | DOI | MR | Zbl
[7] A. Hattori, “A foundation of torsion theory for modules over general rings”, Nagoya Math. J., 17 (1960), 147–158 | DOI | MR | Zbl
[8] T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999 | MR | Zbl
[9] G. Lee, S. T. Rizvi, C. S. Roman, “Rickart modules”, Comm. Algebra, 38:11 (2010), 4005–4027 | DOI | MR | Zbl
[10] C. Lomp, “On semilocal modules and rings”, Comm. Algebra, 27:4 (1999), 1921–1935 | DOI | MR | Zbl
[11] S. Maeda, “On a ring whose principal right ideals generated by idempotents form a lattice”, J. Sci. Hiroshima Univ. Ser. A, 24 (1960), 509–525 | MR | Zbl
[12] N. H. McCoy, The Theory of Rings, Chelsea Publishing Co., New York, 1973 | MR | Zbl
[13] S. T. Rizvi, C. S. Roman, “Baer property of modules and applications”, Advances in Ring Theory, 2005, 225–241 | DOI | MR | Zbl
[14] B. Ungor, S. Halicioglu, A. Harmanci, “Modules in which inverse images of some submodules are direct summands”, Comm. Algebra, 44:4 (2016), 1496–1513 | DOI | MR | Zbl
[15] R. Wisbauer, Foundations of Module and Ring Theory Gordon and Breach Science Publishers, Philadelphia, PA, 1991 | MR