Cancellable elements of the lattice of~semigroup~varieties
Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 34-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

We completely determine all commutative semigroup varieties that are cancellable elements of the lattice SEM of all semigroup varieties. In particular, we verify that a commutative semigroup variety is a cancellable element of the lattice SEM if and only if it is a modular element of this lattice.
Mots-clés : semigroup, variety, cancellable element of a lattice, modular element of a lattice.
@article{ADM_2018_26_1_a4,
     author = {Sergey V. Gusev and Dmitry V. Skokov and Boris M. Vernikov},
     title = {Cancellable elements of the lattice of~semigroup~varieties},
     journal = {Algebra and discrete mathematics},
     pages = {34--46},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a4/}
}
TY  - JOUR
AU  - Sergey V. Gusev
AU  - Dmitry V. Skokov
AU  - Boris M. Vernikov
TI  - Cancellable elements of the lattice of~semigroup~varieties
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 34
EP  - 46
VL  - 26
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a4/
LA  - en
ID  - ADM_2018_26_1_a4
ER  - 
%0 Journal Article
%A Sergey V. Gusev
%A Dmitry V. Skokov
%A Boris M. Vernikov
%T Cancellable elements of the lattice of~semigroup~varieties
%J Algebra and discrete mathematics
%D 2018
%P 34-46
%V 26
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a4/
%G en
%F ADM_2018_26_1_a4
Sergey V. Gusev; Dmitry V. Skokov; Boris M. Vernikov. Cancellable elements of the lattice of~semigroup~varieties. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 34-46. https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a4/

[1] G. Grätzer, Lattice Theory: Foundation, Birkhäuser, Basel AG; Springer, 2011 | MR | Zbl

[2] J. Ježek, “The lattice of equational theories. Part I: modular elements”, Czechosl. Math. J., 31 (1981), 127–152 | Zbl

[3] J. Ježek, R. N. McKenzie, “Definability in the lattice of equational theories of semigroups”, Semigroup Forum, 46 (1993), 199–245 | DOI | MR | Zbl

[4] Soviet Math. (Iz. VUZ), 25:4 (1981), 53–63 | MR | Zbl

[5] B. Šešelja, A. Tepavčević, Weak Congruences in Universal Algebra, Institute of Mathematics, Novi Sad, 2001

[6] V. Yu. Shaprynskiǐ, “Modular and lower-modular elements of lattices of semigroup varieties”, Semigroup Forum, 85 (2012), 97–110 | DOI | MR | Zbl

[7] V. Yu. Shaprynskiǐ, B. M. Vernikov, “Lower-modular elements of the lattice of semigroup varieties. III”, Acta Sci. Math. (Szeged), 76 (2010), 371–382 | MR | Zbl

[8] Russian Math. (Iz. VUZ), 2009, 1–28 | MR | Zbl

[9] B. M. Vernikov, “On modular elements of the lattice of semigroup varieties”, Comment. Math. Univ. Carol., 48 (2007), 595–606 | MR | Zbl

[10] B. M. Vernikov, “Upper-modular elements of the lattice of semigroup varieties”, Algebra Universalis, 58 (2008), 405–428 | DOI | MR

[11] B. M. Vernikov, “Special elements in lattices of semigroup varieties”, Acta Sci. Math. (Szeged), 81 (2015), 79–109 | DOI | MR | Zbl

[12] B. M. Vernikov, M. V. Volkov, “Lattices of nilpotent semigroup varieties”, Algebraic Systems and their Varieties, ed. L. N. Shevrin, Ural State University, Sverdlovsk, 1988, 53–65 (Russian) | MR

[13] M. V. Volkov, “Modular elements of the lattice of semigroup varieties”, Contrib. General Algebra, 16 (2005), 275–288 | MR | Zbl