Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2018_26_1_a3, author = {F. A. G\'omez Gonz\'alez and R. Vel\'asquez}, title = {Orthosymplectic {Jordan} superalgebras {and~the~Wedderburn} principal theorem}, journal = {Algebra and discrete mathematics}, pages = {19--33}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2018}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a3/} }
TY - JOUR AU - F. A. Gómez González AU - R. Velásquez TI - Orthosymplectic Jordan superalgebras and~the~Wedderburn principal theorem JO - Algebra and discrete mathematics PY - 2018 SP - 19 EP - 33 VL - 26 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a3/ LA - en ID - ADM_2018_26_1_a3 ER -
F. A. Gómez González; R. Velásquez. Orthosymplectic Jordan superalgebras and~the~Wedderburn principal theorem. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 19-33. https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a3/
[1] Th. Molien, “On systems of higher complex numbers”, Math Ann, XLI (1893), 83–156 | MR
[2] Th. Molien, “Correction to the article “On systems of higher complex numbers””, Math. Ann., XLII (1893), 308–312 | DOI | MR
[3] S. Epsteen and J. H. Maclagan-Wedderburn, “On the structure of hypercomplex number systems”, Amer. Math. Soc., 12:2 (1905), 172–178 | DOI | MR
[4] R. D. Schafer, “The Wedderburn principal theorem for Alternative algebras”, Bull. Amer. Math. Soc., 55 (1949), 604–614 | DOI | MR | Zbl
[5] A. A. Albert, “The Wedderburn principal theorem for Jordan algebras”, Ann. Math. (2), 48 (1947), 1–7 | DOI | MR | Zbl
[6] V. G. Askinuze, “A theorem on the splittability on $J$-algebras”, Ukrain. Mat. Z., 3 (1951), 381–398 | MR | Zbl
[7] E. J. Taft, “Invariant Wedderburn factors”, Illinois J. Math., 1957, 565–573 | DOI | MR | Zbl
[8] A. J. Penico, “The Wedderburn principal theorem for Jordan algebras”, Trans. Amer. Math. Soc., 70 (1951), 404–420 | DOI | MR | Zbl
[9] N. A. Pisarenko, “The Wedderburn decomposition in finite dimensional alternative superalgebras”, Algebra Logic, 32:4 (1993), 231–238 | DOI | MR | Zbl
[10] F. Gómez González, “The Jordan superalgebras of type $\mathcal{M}_{n|m}(\mathbb{F})^{(+)}$ and the Wedderburn principal theorem”, Comm. Alg., 44:7 (2016), 2867–2886 | DOI | MR | Zbl
[11] F. A. Gomez-Gonzalez, “Wedderburn principal theorem for Jordan superalgebras I”, Journal of Algebra, 505 (2018), to appear | DOI | MR | Zbl
[12] V. G. Kac, “Classification of simple $\mathbb{Z}$-graded Lie superalgebras and simple Jordan superalgebras”, Comm. Algebra, 5:13 (1977), 1375–1400 | DOI | MR | Zbl
[13] I. L. Kantor, “Jordan and Lie superalgebras determined by a Poisson algebra”, Amer. Math. Soc. Transl. Ser. 2, 151 (1992) | MR | Zbl
[14] E. I. Zelmanov, “Semisimple finite dimensional Jordan superalgebras”, Lie algebras, rings and related topics, Papers of the 2nd Tainan-Moscow international algebra workshop 97 (Taiwan, January 11–17, 1997), eds. Fong, Yuen et al., Springer, Hong Kong, 2000, 227–243 | Zbl
[15] A. S. Shtern, “Representations of excepcional Jordan superalgebra”, Func. Anal. and Appl., 21:3 (1987), 93–94 | DOI | MR | Zbl
[16] A. S. Shtern, “Representations of finite dimensional Jordan superalgebras Poisson brackets”, Comm. Alg., 23:5 (1995), 1815–1823 | DOI | MR | Zbl
[17] M. Trushina, “Irreducible representations of a certain Jordan superalgebra”, J. Algebra Appl., 4:1 (2005), 1–14 | DOI | MR
[18] C. Martinez and E. I. Zelmanov, “Unital Bimodules over the simple Jordan superalgebra $\mathcal{D}_t$”, Trans. Amer. Math. Soc., 358:8 (2005), 3637–3649 | DOI | MR
[19] C. Martinez and E. I. Zelmanov, “Representation theory of Jordan superalgebras I”, Trans. Amer. Math. Soc., 362:2 (2010), 815–846 | DOI | MR | Zbl
[20] C. Martinez, I. Shestakov and E. I. Zelmanov, “Jordan bimodules over the superalgebras $\mathcal{P}(n)$ and $\mathcal{Q}(n)$”, Trans. Amer. Math. Soc., 362:4 (2010), 2037–2051 | DOI | MR | Zbl
[21] I. P. Shestakov, “Alternative and Jordan superalgebras”, Siberian Adv. Math., 9:2 (1999), 83–99 | MR | Zbl
[22] C. T. C. Wall, “Graded Brauer groups”, J. Reine Angew Math., 213 (1964), 187–199 | MR | Zbl
[23] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov and A. I. Shirshov, Rings that are nearly associative, Academic Press, 1982 | MR | Zbl