Orthosymplectic Jordan superalgebras and~the~Wedderburn principal theorem
Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 19-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue of the Wedderburn Principal Theorem (WPT) is considered for finite-dimensional Jordan superalgebras A with solvable radical N, N2=0, and such that A/NJospn|2m(F), where F is a field of characteristic zero. We prove that the WPT is valid under some restrictions over the irreducible A/NJospn|2m(F)-bimodules contained in N, and show with counter-examples that these restrictions cannot be weakened.
Mots-clés : Jordan superalgebras, Wedderburn theorem.
@article{ADM_2018_26_1_a3,
     author = {F. A. G\'omez Gonz\'alez and R. Vel\'asquez},
     title = {Orthosymplectic {Jordan} superalgebras {and~the~Wedderburn} principal theorem},
     journal = {Algebra and discrete mathematics},
     pages = {19--33},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a3/}
}
TY  - JOUR
AU  - F. A. Gómez González
AU  - R. Velásquez
TI  - Orthosymplectic Jordan superalgebras and~the~Wedderburn principal theorem
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 19
EP  - 33
VL  - 26
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a3/
LA  - en
ID  - ADM_2018_26_1_a3
ER  - 
%0 Journal Article
%A F. A. Gómez González
%A R. Velásquez
%T Orthosymplectic Jordan superalgebras and~the~Wedderburn principal theorem
%J Algebra and discrete mathematics
%D 2018
%P 19-33
%V 26
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a3/
%G en
%F ADM_2018_26_1_a3
F. A. Gómez González; R. Velásquez. Orthosymplectic Jordan superalgebras and~the~Wedderburn principal theorem. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 19-33. https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a3/

[1] Th. Molien, “On systems of higher complex numbers”, Math Ann, XLI (1893), 83–156 | MR

[2] Th. Molien, “Correction to the article “On systems of higher complex numbers””, Math. Ann., XLII (1893), 308–312 | DOI | MR

[3] S. Epsteen and J. H. Maclagan-Wedderburn, “On the structure of hypercomplex number systems”, Amer. Math. Soc., 12:2 (1905), 172–178 | DOI | MR

[4] R. D. Schafer, “The Wedderburn principal theorem for Alternative algebras”, Bull. Amer. Math. Soc., 55 (1949), 604–614 | DOI | MR | Zbl

[5] A. A. Albert, “The Wedderburn principal theorem for Jordan algebras”, Ann. Math. (2), 48 (1947), 1–7 | DOI | MR | Zbl

[6] V. G. Askinuze, “A theorem on the splittability on $J$-algebras”, Ukrain. Mat. Z., 3 (1951), 381–398 | MR | Zbl

[7] E. J. Taft, “Invariant Wedderburn factors”, Illinois J. Math., 1957, 565–573 | DOI | MR | Zbl

[8] A. J. Penico, “The Wedderburn principal theorem for Jordan algebras”, Trans. Amer. Math. Soc., 70 (1951), 404–420 | DOI | MR | Zbl

[9] N. A. Pisarenko, “The Wedderburn decomposition in finite dimensional alternative superalgebras”, Algebra Logic, 32:4 (1993), 231–238 | DOI | MR | Zbl

[10] F. Gómez González, “The Jordan superalgebras of type $\mathcal{M}_{n|m}(\mathbb{F})^{(+)}$ and the Wedderburn principal theorem”, Comm. Alg., 44:7 (2016), 2867–2886 | DOI | MR | Zbl

[11] F. A. Gomez-Gonzalez, “Wedderburn principal theorem for Jordan superalgebras I”, Journal of Algebra, 505 (2018), to appear | DOI | MR | Zbl

[12] V. G. Kac, “Classification of simple $\mathbb{Z}$-graded Lie superalgebras and simple Jordan superalgebras”, Comm. Algebra, 5:13 (1977), 1375–1400 | DOI | MR | Zbl

[13] I. L. Kantor, “Jordan and Lie superalgebras determined by a Poisson algebra”, Amer. Math. Soc. Transl. Ser. 2, 151 (1992) | MR | Zbl

[14] E. I. Zelmanov, “Semisimple finite dimensional Jordan superalgebras”, Lie algebras, rings and related topics, Papers of the 2nd Tainan-Moscow international algebra workshop 97 (Taiwan, January 11–17, 1997), eds. Fong, Yuen et al., Springer, Hong Kong, 2000, 227–243 | Zbl

[15] A. S. Shtern, “Representations of excepcional Jordan superalgebra”, Func. Anal. and Appl., 21:3 (1987), 93–94 | DOI | MR | Zbl

[16] A. S. Shtern, “Representations of finite dimensional Jordan superalgebras Poisson brackets”, Comm. Alg., 23:5 (1995), 1815–1823 | DOI | MR | Zbl

[17] M. Trushina, “Irreducible representations of a certain Jordan superalgebra”, J. Algebra Appl., 4:1 (2005), 1–14 | DOI | MR

[18] C. Martinez and E. I. Zelmanov, “Unital Bimodules over the simple Jordan superalgebra $\mathcal{D}_t$”, Trans. Amer. Math. Soc., 358:8 (2005), 3637–3649 | DOI | MR

[19] C. Martinez and E. I. Zelmanov, “Representation theory of Jordan superalgebras I”, Trans. Amer. Math. Soc., 362:2 (2010), 815–846 | DOI | MR | Zbl

[20] C. Martinez, I. Shestakov and E. I. Zelmanov, “Jordan bimodules over the superalgebras $\mathcal{P}(n)$ and $\mathcal{Q}(n)$”, Trans. Amer. Math. Soc., 362:4 (2010), 2037–2051 | DOI | MR | Zbl

[21] I. P. Shestakov, “Alternative and Jordan superalgebras”, Siberian Adv. Math., 9:2 (1999), 83–99 | MR | Zbl

[22] C. T. C. Wall, “Graded Brauer groups”, J. Reine Angew Math., 213 (1964), 187–199 | MR | Zbl

[23] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov and A. I. Shirshov, Rings that are nearly associative, Academic Press, 1982 | MR | Zbl