Variants of the lattice of partitions of a countable set
Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 8-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the ordered by inclusion lattice Part(M) of all partitions of a countable set M. The lattice Part(M) is a semigroup with respect to the operation which maps two partitions to their greatest lower bound. We obtain necessary and sufficiency conditions for isomorphism of two variants of the semigroup Part(M).
Keywords: sandwich-semigroup, lattice of partitions.
Mots-clés : variant
@article{ADM_2018_26_1_a2,
     author = {Oleksandra O. Desiateryk and Olexandr G. Ganyushkin},
     title = {Variants of the lattice of partitions of a countable set},
     journal = {Algebra and discrete mathematics},
     pages = {8--18},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a2/}
}
TY  - JOUR
AU  - Oleksandra O. Desiateryk
AU  - Olexandr G. Ganyushkin
TI  - Variants of the lattice of partitions of a countable set
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 8
EP  - 18
VL  - 26
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a2/
LA  - en
ID  - ADM_2018_26_1_a2
ER  - 
%0 Journal Article
%A Oleksandra O. Desiateryk
%A Olexandr G. Ganyushkin
%T Variants of the lattice of partitions of a countable set
%J Algebra and discrete mathematics
%D 2018
%P 8-18
%V 26
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a2/
%G en
%F ADM_2018_26_1_a2
Oleksandra O. Desiateryk; Olexandr G. Ganyushkin. Variants of the lattice of partitions of a countable set. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 8-18. https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a2/

[1] E. Lyapin, Polugruppy, Fizmatgiz, 1960 | Zbl

[2] K. Chase, “Sandwich semigroups of binary relations”, Discrete Math., 28:3 (1979), 231–236 | DOI | MR | Zbl

[3] J. Hickey, “Semigroups under a sendwich operation”, Proc. Edinburg Math. Soc. (2), 26:3 (1983), 371–382 | DOI | MR | Zbl

[4] T. Khan, M. Lawson, “Variants of regular semigroups”, Semigroup Forum., 62:3 (2001), 358–374 | DOI | MR | Zbl

[5] V. Mazorchuk, G. Tsyaputa, “Isolated subsemigroups in the variants of $\mathcal{Y}_n$”, Acta Math. Univ. Com., LXXVII:1 (2008), 63–84 | MR | Zbl

[6] I. Dolinka, J. East, “Variants of finite full transformation semigroups”, Internat. J. Algebra Comput., 25:8 (2015), 1187–1222 | DOI | MR | Zbl

[7] K. D. Magill Jr., S. Subbiah, “Green's relations for regular elements of sandwich semigroups. I. General results”, Proc. London Math. Soc., 31:2 (1975), 194–210 | DOI | MR | Zbl

[8] O. Ganyushkin, V. Mazorchuk, Classical Finite Transformation Semigroups. An Introduction., Algebra and Applications, Springer-Verlag, 2009 | DOI | MR | Zbl

[9] G. Gretcer, Obshchaya teoriya reshotok, Mir, 1981

[10] O. Desiateryk, “Variants of commutative bands with zero”, Bulletin of Taras Shevchenko National University of Kyiv, Series: Physics Mathematics, 4 (2015), 15–20 | Zbl