Algebraic Morse theory and homological perturbation theory
Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 124-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the main result of algebraic Morse theory can be obtained as a consequence of the perturbation lemma of Brown and Gugenheim.
Keywords: algebraic Morse theory, homological perturbation theory
Mots-clés : Perturbation Lemma.
@article{ADM_2018_26_1_a11,
     author = {Emil Sk\"oldberg},
     title = {Algebraic {Morse} theory and homological perturbation theory},
     journal = {Algebra and discrete mathematics},
     pages = {124--129},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a11/}
}
TY  - JOUR
AU  - Emil Sköldberg
TI  - Algebraic Morse theory and homological perturbation theory
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 124
EP  - 129
VL  - 26
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a11/
LA  - en
ID  - ADM_2018_26_1_a11
ER  - 
%0 Journal Article
%A Emil Sköldberg
%T Algebraic Morse theory and homological perturbation theory
%J Algebra and discrete mathematics
%D 2018
%P 124-129
%V 26
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a11/
%G en
%F ADM_2018_26_1_a11
Emil Sköldberg. Algebraic Morse theory and homological perturbation theory. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 124-129. https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a11/

[1] Alexander Berglund, Algebraic discrete Morse theory II—extra algebraic structures, preprint

[2] Alexander Berglund, “Homological perturbation theory for algebras over operads”, Algebr. Geom. Topol., 14:5 (2014), 2511–2548 | DOI | MR | Zbl

[3] R. Brown, “The twisted Eilenberg-Zilber theorem” (Messina 1964), Simposio di Topologia, 1965, 33–37, Edizioni Oderisi, Gubbio | MR

[4] Robin Forman, “Morse theory for cell complexes”, Adv. Math., 134:1 (1998), 90–145 | DOI | MR | Zbl

[5] V. K. A. M. Gugenheim, “On the chain-complex of a fibration”, Illinois J. Math., 16 (1972), 398–414 | DOI | MR | Zbl

[6] Johannes Huebschmann, “Perturbation theory and free resolutions for nilpotent groups of class $2$”, J. Algebra, 126:2 (1989), 348–399 | DOI | MR | Zbl

[7] Leif Johansson, Larry Lambe, and Emil Sköldberg, “On constructing resolutions over the polynomial algebra”, Homology Homotopy Appl., 4, The Roos Festschrift volume:2, part 2 (2002), 315–336 | DOI | MR | Zbl

[8] Jakob Jonsson, “On the topology of simplicial complexes related to 3-connected and Hamiltonian graphs”, J. Combin. Theory Ser. A, 104:1 (2003), 169–199 | DOI | MR | Zbl

[9] Michael Jöllenbeck and Volkmar Welker, Minimal resolutions via algebraic discrete Morse theory, Mem. Amer. Math. Soc., 197, no. 923, 2009, vi+74 pp. | MR

[10] Dmitry N. Kozlov, “Discrete Morse theory for free chain complexes”, C. R. Math. Acad. Sci. Paris, 340:12 (2005), 867–872 | DOI | MR | Zbl

[11] Larry A. Lambe, “Homological perturbation theory, Hochschild homology, and formal groups”, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA 1990), Amer. Math. Soc., Providence, RI, 1992, 183–218 | MR

[12] Emil Sköldberg, “Morse theory from an algebraic viewpoint”, Trans. Amer. Math. Soc., 358:1 (2006), 115–129, electronic | MR | Zbl