On the saturations of submodules
Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 110-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let RS be a ring extension, and let A be an R-submodule of S. The saturation of A (in S) by τ is set A[τ]={xS:A for some tτ}, where τ is a multiplicative subset of R. We study properties of saturations of R-submodules of S. We use this notion of saturation to characterize star operations on ring extensions RS satisfying the relation (AB)=AB whenever A and B are two R-submodules of S such that AS=BS=S.
Keywords: star operation, ring extension, prime spectrum, localization, flat module.
Mots-clés : saturation
@article{ADM_2018_26_1_a10,
     author = {Lokendra Paudel and Simplice Tchamna},
     title = {On the saturations of submodules},
     journal = {Algebra and discrete mathematics},
     pages = {110--123},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a10/}
}
TY  - JOUR
AU  - Lokendra Paudel
AU  - Simplice Tchamna
TI  - On the saturations of submodules
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 110
EP  - 123
VL  - 26
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a10/
LA  - en
ID  - ADM_2018_26_1_a10
ER  - 
%0 Journal Article
%A Lokendra Paudel
%A Simplice Tchamna
%T On the saturations of submodules
%J Algebra and discrete mathematics
%D 2018
%P 110-123
%V 26
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a10/
%G en
%F ADM_2018_26_1_a10
Lokendra Paudel; Simplice Tchamna. On the saturations of submodules. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 110-123. https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a10/

[1] M. F. Atiyah, I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., 1969 | MR | Zbl

[2] D. D. Anderson, “Star-operations induced by overrings”, Communications in Algebra, 16:12 (1988), 2535–2553 | DOI | MR | Zbl

[3] N. Bourbaki, Commutative algebra Springer-Verlag, Berlin, 1998

[4] S. Gabelli and E. Houston, “Ideal theory in pullbacks. Non-Noetherian commutative ring theory”, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000, 199–227 | MR | Zbl

[5] R. Gilmer, Multiplicative ideal theory, Corrected reprint of the 1972 edition, Queen's Papers in Pure and Applied Mathematics, 90, Queen's University, Kingston, ON, 1992 | MR | Zbl

[6] M. Knebush and T. Kaiser, Manis valuations and Prüfer extensions, v. II, Lectures Notes in Mathematics, 2103, Springer, Cham, Switzerland, 2014 | DOI | MR

[7] M. Knebusch, D. Zhang, Manis valuations and Prüfer extensions, v. I, Lecture Notes in Mathematics, 1791, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl

[8] D. B. McNair, “Duals of ideals in rings with zero divisors”, Houston Journal of Mathematics, 37:1 (2011), 1–26 | MR | Zbl