Modules which have a rad-supplement that is a direct summand in every extension
Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 157-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the concept of modules with the properties (RE) and (SRE), and we provide various properties of these modules. In particular, we prove that a semisimple module M is Rad-supplementing if and only if M has the property (SRE). Moreover, we show that a ring R is a left V-ring if and only if every left R-module with the property (RE) is injective. Finally, we characterize the rings whose modules have the properties (RE) and (SRE).
Mots-clés : Rad-supplement, module with the properties (RE) and (SRE), artinian serial ring.
@article{ADM_2018_25_1_a12,
     author = {Burcu Ni\c{s}anc{\i} T\"urkmen and Erg\"ul T\"urkmen},
     title = {Modules which have a rad-supplement that is a direct summand in every extension},
     journal = {Algebra and discrete mathematics},
     pages = {157--164},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2018_25_1_a12/}
}
TY  - JOUR
AU  - Burcu Nişancı Türkmen
AU  - Ergül Türkmen
TI  - Modules which have a rad-supplement that is a direct summand in every extension
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 157
EP  - 164
VL  - 25
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2018_25_1_a12/
LA  - en
ID  - ADM_2018_25_1_a12
ER  - 
%0 Journal Article
%A Burcu Nişancı Türkmen
%A Ergül Türkmen
%T Modules which have a rad-supplement that is a direct summand in every extension
%J Algebra and discrete mathematics
%D 2018
%P 157-164
%V 25
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2018_25_1_a12/
%G en
%F ADM_2018_25_1_a12
Burcu Nişancı Türkmen; Ergül Türkmen. Modules which have a rad-supplement that is a direct summand in every extension. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 157-164. https://geodesic-test.mathdoc.fr/item/ADM_2018_25_1_a12/

[1] E. Büyükaş{\i}k, C. Lomp, “Rings Whose Modules are Weakly Supplemented are Perfect. Application to Certain Ring Extension”, Math. Scand., 106 (2009), 25–30 | DOI | MR

[2] E. Büyükaş{\i}k, E. Mermut, S. Özdemir, “Rad-Supplemented Modules”, Rend. Semin. Mat. Univ. Padova, 124 (2010), 157–177 | DOI | MR | Zbl

[3] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, Basel, 2006, 406 pp. | MR | Zbl

[4] F. Kasch, Modules and Rings, Academic Press Inc., 1982 | MR | Zbl

[5] D. Keskin, P. F. Smith, W. Xue, “Rings Whose Modules Are $\oplus $-Supplemented”, J. Algebra, 218 (1999), 161–169 | DOI | MR

[6] S. Özdemir, “Rad-Supplementing Modules”, Journal of the Korean Mathematical Society, 53:2 (2016), 403–414 | DOI | MR | Zbl

[7] B. N. Türkmen, “On Generalizations of Injective Modules”, Publications de L'Institut Mathematique, 99(113) (2016), 249–255 | DOI | MR | Zbl

[8] D. W. Sharpe, P. Vamos, Injective Modules, Cambridge University Press, 1972 | MR | Zbl

[9] E. Türkmen, “Rad-$\oplus$-Supplemented Modules”, Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica, 21:1 (2013), 225–238 | DOI | MR

[10] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl

[11] H. Zöschinger, “Komplementierte Moduln über Dedekindringen”, J. Algebra, 29 (1974), 42–56 | DOI | MR | Zbl

[12] Zöschinger H. \title Moduln, die in jeder Erweiterung ein Komplement haben, Math. Scand., 35 (1974), 267–287 | DOI | MR