Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2018_25_1_a12, author = {Burcu Ni\c{s}anc{\i} T\"urkmen and Erg\"ul T\"urkmen}, title = {Modules which have a rad-supplement that is a direct summand in every extension}, journal = {Algebra and discrete mathematics}, pages = {157--164}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2018}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2018_25_1_a12/} }
TY - JOUR AU - Burcu Nişancı Türkmen AU - Ergül Türkmen TI - Modules which have a rad-supplement that is a direct summand in every extension JO - Algebra and discrete mathematics PY - 2018 SP - 157 EP - 164 VL - 25 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/ADM_2018_25_1_a12/ LA - en ID - ADM_2018_25_1_a12 ER -
%0 Journal Article %A Burcu Nişancı Türkmen %A Ergül Türkmen %T Modules which have a rad-supplement that is a direct summand in every extension %J Algebra and discrete mathematics %D 2018 %P 157-164 %V 25 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/ADM_2018_25_1_a12/ %G en %F ADM_2018_25_1_a12
Burcu Nişancı Türkmen; Ergül Türkmen. Modules which have a rad-supplement that is a direct summand in every extension. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 157-164. https://geodesic-test.mathdoc.fr/item/ADM_2018_25_1_a12/
[1] E. Büyükaş{\i}k, C. Lomp, “Rings Whose Modules are Weakly Supplemented are Perfect. Application to Certain Ring Extension”, Math. Scand., 106 (2009), 25–30 | DOI | MR
[2] E. Büyükaş{\i}k, E. Mermut, S. Özdemir, “Rad-Supplemented Modules”, Rend. Semin. Mat. Univ. Padova, 124 (2010), 157–177 | DOI | MR | Zbl
[3] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, Basel, 2006, 406 pp. | MR | Zbl
[4] F. Kasch, Modules and Rings, Academic Press Inc., 1982 | MR | Zbl
[5] D. Keskin, P. F. Smith, W. Xue, “Rings Whose Modules Are $\oplus $-Supplemented”, J. Algebra, 218 (1999), 161–169 | DOI | MR
[6] S. Özdemir, “Rad-Supplementing Modules”, Journal of the Korean Mathematical Society, 53:2 (2016), 403–414 | DOI | MR | Zbl
[7] B. N. Türkmen, “On Generalizations of Injective Modules”, Publications de L'Institut Mathematique, 99(113) (2016), 249–255 | DOI | MR | Zbl
[8] D. W. Sharpe, P. Vamos, Injective Modules, Cambridge University Press, 1972 | MR | Zbl
[9] E. Türkmen, “Rad-$\oplus$-Supplemented Modules”, Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica, 21:1 (2013), 225–238 | DOI | MR
[10] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl
[11] H. Zöschinger, “Komplementierte Moduln über Dedekindringen”, J. Algebra, 29 (1974), 42–56 | DOI | MR | Zbl
[12] Zöschinger H. \title Moduln, die in jeder Erweiterung ein Komplement haben, Math. Scand., 35 (1974), 267–287 | DOI | MR