Multiplicative orders of elements in Conway's towers of finite fields
Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 137-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a lower bound on multiplicative orders of certain elements in defined by Conway towers of finite fields of characteristic 2 and also formulate a condition under that these elements are primitive.
Keywords: finite field, Conway's tower.
Mots-clés : multiplicative order
@article{ADM_2018_25_1_a10,
     author = {Roman Popovych},
     title = {Multiplicative orders of elements in {Conway's} towers of finite fields},
     journal = {Algebra and discrete mathematics},
     pages = {137--146},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2018_25_1_a10/}
}
TY  - JOUR
AU  - Roman Popovych
TI  - Multiplicative orders of elements in Conway's towers of finite fields
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 137
EP  - 146
VL  - 25
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2018_25_1_a10/
LA  - en
ID  - ADM_2018_25_1_a10
ER  - 
%0 Journal Article
%A Roman Popovych
%T Multiplicative orders of elements in Conway's towers of finite fields
%J Algebra and discrete mathematics
%D 2018
%P 137-146
%V 25
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2018_25_1_a10/
%G en
%F ADM_2018_25_1_a10
Roman Popovych. Multiplicative orders of elements in Conway's towers of finite fields. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 137-146. https://geodesic-test.mathdoc.fr/item/ADM_2018_25_1_a10/

[1] O. Ahmadi, I. E. Shparlinski, J. F. Voloch, “Multiplicative order of Gauss periods”, Intern. J. Number Theory, 4 (2010), 877–882 | DOI | MR | Zbl

[2] L. le Bruyn, 2010 ; ; http://www.neverendingbooks.org/the-odd-knights-of-the-round-tablehttp://www.neverendingbooks.org/seating-the-first-few-thousand-knightshttp://www.neverendingbooks.org/seating-the-first-few-thousand-knights

[3] Q. Cheng, “On the construction of finite field elements of large order”, Finite Fields Appl., 3 (2005), 58–366 | MR

[4] J. H. Conway, On Numbers and Games, Academic Press, New York, 1976 | MR | Zbl

[5] J. H. Conway, N. J. A. Sloane, “Lexicographic codes: error-correcting codes from game theory”, IEEE Trans. Inform. Theory, 3 (1986), 337–348 | DOI | MR

[6] R. Crandall, C. Pomerance, Prime Numbers: A Computational Perspective, Springer-Verlag, New York, 2005 | MR | Zbl

[7] S. Gao, “Elements of provable high orders in finite fields”, Proc. Amer. Math. Soc., 6 (1999), 1615–1623 | DOI | MR | Zbl

[8] M.-D. Huang, A. K. Narayanan, Finding primitive elements in finite fields of small characteristic, 2013, arXiv: http://arxiv.org/abs/1304.1206 | MR

[9] H. Ito, T. Kajiwara, H. Song, “A Tower of Artin-Schreier extensions of finite fields and its applications”, JP J. Algebra, Number Theory Appl., 2 (2011), 111–125 | MR | Zbl

[10] H.W.Lenstra, Nim multiplication, 1978 https://openaccess.leidenuniv.nl/handle/1887/2125

[11] R. Lidl, H. Niederreiter, Finite Fields, Cambridge University Press, 1997 | MR

[12] R. Popovych, “Elements of high order in finite fields of the form $F_{q}[x]/\Phi_{r}(x)$”, Finite Fields Appl., 4 (2012), 700–710 | DOI | MR | Zbl

[13] R. Popovych, “Elements of high order in finite fields of the form $F_{q} [x]/(x^{m}-a)$”, Finite Fields Appl., 1 (2013), 86–92 | DOI | MR

[14] D. Wiedemann, “An iterated quadratic extension of $\mathrm{GF}(2)$”, Fibonacci Quart., 4 (1988), 290–295 | MR | Zbl