Quantum Boolean algebras
Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 106-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce quantum Boolean algebras which are the analogue of the Weyl algebras for Boolean affine spaces. We study quantum Boolean algebras from the logical and the set theoretical viewpoints.
Mots-clés : Boolean algebras, Weyl algebras, quantum logic.
@article{ADM_2017_24_1_a7,
     author = {Rafael D{\'\i}az},
     title = {Quantum {Boolean} algebras},
     journal = {Algebra and discrete mathematics},
     pages = {106--143},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2017},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a7/}
}
TY  - JOUR
AU  - Rafael Díaz
TI  - Quantum Boolean algebras
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 106
EP  - 143
VL  - 24
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a7/
LA  - en
ID  - ADM_2017_24_1_a7
ER  - 
%0 Journal Article
%A Rafael Díaz
%T Quantum Boolean algebras
%J Algebra and discrete mathematics
%D 2017
%P 106-143
%V 24
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a7/
%G en
%F ADM_2017_24_1_a7
Rafael Díaz. Quantum Boolean algebras. Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 106-143. https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a7/

[1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, “Quantum Mechanics as a Deformation of Classical Mechanics”, Lett. Math. Phys., 1 (1977), 521–530 | DOI | MR

[2] F. Bergeron, G. Labelle, P. Leroux, Combinatorial Species and Tree-like Structures, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[3] G. Birkhoff, J. von Neumann, “The Logic of Quantum Mechanics”, Ann. Math., 37 (1936), 823–843 | DOI | MR

[4] J. Boardman, R. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math., 347, Springer-Verlag, Berlin, 1973 | DOI | MR | Zbl

[5] G. Boole, An Investigation of the Laws of Thought, Dover Publications, New York, 1958 | MR

[6] F. Brown, Boolean Reasoning, Dover Publications, New York, 2003 | MR | Zbl

[7] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1990 | MR

[8] A. Connes, C. Consani, M. Marcolli, “Fun with $F_1$”, J. Number Theory, 129 (2009), 1532–1561 | DOI | MR | Zbl

[9] A. Deitmar, “Schemes over F1”, Number Fields and Function Fields—Two Parallel Worlds, Progress in Mathematics, 239, eds. G. van der Geer, B. Moonen, R. Schoof, Birkhäuser, Basel, 2005, 87–100 | MR | Zbl

[10] R. Díaz, E. Pariguan, “Quantum Symmetric Functions”, Comm. Alg., 33 (2005), 1947–1978 | DOI | MR | Zbl

[11] R. Díaz, E. Pariguan, “Super, Quantum and Non-Commutative Species”, Afr. Diaspora J. Math., 8 (2009), 90–130 | MR | Zbl

[12] R. Díaz, M. Rivas, “Symmetric Boolean Algebras”, Acta Math. Univ. Comenianae, LXXIX (2010), 181–197 | MR

[13] V. Ginzburg, M. Kapranov, “Kozul duality for operads”, Duke Math. J., 76 (1994), 203–272 | DOI | MR | Zbl

[14] J. Harris, Algebraic Geometry, Springer-Verlag, Berlin, 1992 | MR | Zbl

[15] M. Markl, “Operads and PROPs”, Handbook of Algebra, 5, 2008, 87–140 | DOI | MR | Zbl

[16] M. Markl, S. Shnider, J. Stasheff, Operads in algebra, topology and physics, Math. Surveys and Monographs, 96, Amer. Math. Soc., Providence, 2002 | MR | Zbl

[17] I. Reed, “A class of multiple error-correcting codes and decoding scheme”, IRE Trans. Inf. Theory, 4 (1954), 38–49 | DOI | MR

[18] G.-C. Rota, Gian-Carlo Rota on Combinatorics, eds. J. Kung, Birkhäuser, Boston and Basel, 1995 | MR | Zbl

[19] I. Shafarevich, Basic Algebraic Geometry, v. 1, Springer-Verlag, Berlin, 1994 | MR

[20] M. Stone, “The Theory of Representations for Boolean Algebras”, Trans. Amer. Math. Soc., 40 (1936), 37–111 | MR

[21] C. Soulé, “Les variétés sur le corps à un élément”, Moscow Math. J., 4 (2004), 217–244 | MR | Zbl

[22] J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, 1955 | MR | Zbl

[23] I. Zhegalkin, “On the Technique of Calculating Propositions in Symbolic Logic”, Mat. Sb., 43 (1927), 9–28