Voir la notice de l'article dans Math-Net.Ru
@article{ADM_2017_24_1_a6, author = {E. Chapovsky and O. Shevchyk}, title = {On divergence and sums of derivations}, journal = {Algebra and discrete mathematics}, pages = {99--105}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2017}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a6/} }
E. Chapovsky; O. Shevchyk. On divergence and sums of derivations. Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 99-105. https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a6/
[1] V. V. Bavula, “The groups of automorphisms of the Lie algebras of polynomial vector fields with zero or constant divergence”, Comm. in Algebra, 2016 | DOI | MR
[2] G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia of Math. Sciences, 136, 2006 | MR | Zbl
[3] A. Nowicki, Polynomial Derivations and their Rings of Constants, Uniwersytet Mikolaja Kopernika, Torun, 1994 | MR | Zbl
[4] A. P. Petravchuk, V. V. Stepukh, “On bases of Lie algebras of derivations”, Bull. Taras Shevchenko Nat. Univ. of Kyiv, Ser. Fiz.-Mat., 8:1 (2015), 63–71 | MR
[5] Petravchuk A.P., Iena O.G., “On centralizers of elements in the Lie algebra of the special Cremona group $\mathrm{SA}_2(k)$”, J. Lie Theory, 16:3 (2006), 61–567 | MR