Voir la notice de l'article dans Math-Net.Ru
@article{ADM_2017_24_1_a5, author = {Rajsekhar Bhattacharyya}, title = {Flat extension and phantom homology}, journal = {Algebra and discrete mathematics}, pages = {90--98}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2017}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a5/} }
Rajsekhar Bhattacharyya. Flat extension and phantom homology. Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 90-98. https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a5/
[1] Ana Bravo and Karen E. Smith, “Behavior of test ideals under smooth and etale homomorphism”, Journal of Algebra, 247 (2002), 78–94 | DOI | MR
[2] Winfried Bruns and Jurgen Herzog, Cohen-Macaulay rings, Cambridge University Press, 1997 | MR
[3] Neil Epstein, “Phantom depth and stable phantom exactness”, Trans. Amer. Math. Soc., 359 (2007), 4829–4864, arXiv: 0505235[math.AC] | DOI | MR | Zbl
[4] Melvin Hochster, “Cyclic purity versus purity in escellent Noetherian local rings”, Trans. Amer. Math. Soc., 231 (1977), 463–488 | DOI | MR | Zbl
[5] Melvin Hochster and Craig Huneke, “Tight closure, invariant theory, and the Briançon-Skoda theorem”, J. Amer. Math. Soc., 3:1 (1990), 31–116 | MR | Zbl
[6] Melvin Hochster and Craig Huneke, “$F$-regularity, test elements, and smooth base change”, Trans. Amer. Math. Soc., 346:1 (1994), 1–62 | MR | Zbl
[7] Melvin Hochster and Craig Huneke, “Tight closure of parameter ideals and splitting in module-finite extensions”, J. Algebraic Geom., 3:4 (1994), 599–670 | MR | Zbl
[8] Craig Huneke, Tight closure and its applications, With an appendix by Melvin Hochster, CBMS Reg. Conf. Ser. in Math., 88, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl
[9] Hideyuki Matsumara, Commutative algebra, Advanced book Program, The Bejamin Cummings Publishing Company inc., Reading, Massachusetts, 1980 | MR | Zbl
[10] Hideyuki Matsumara, Commutative Ring Theory, Cambridge University Press, 1990 | MR