$(G,\phi)$-crossed product on~$(G,\phi)$-quasiassociative algebras
Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 46-70.

Voir la notice de l'article dans Math-Net.Ru

The notions of $(G,\phi)$-crossed product and quasicrossed system are introduced in the setting of $(G,\phi)$-quasiassociative algebras, i.e., algebras endowed with a grading by a group $G$, satisfying a “quasiassociative” law. It is presented two equivalence relations, one for quasicrossed systems and another for $(G,\phi)$-crossed products. Also the notion of graded-bimodule in order to study simple $(G,\phi)$-crossed products is studied.
Mots-clés : graded quasialgebras, quasicrossed product, group algebras, twisted group algebras.
@article{ADM_2017_24_1_a3,
     author = {Helena Albuquerque and Elisabete Barreiro and Jos\'e M. S\'anchez-Delgado},
     title = {$(G,\phi)$-crossed product on~$(G,\phi)$-quasiassociative algebras},
     journal = {Algebra and discrete mathematics},
     pages = {46--70},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2017},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a3/}
}
TY  - JOUR
AU  - Helena Albuquerque
AU  - Elisabete Barreiro
AU  - José M. Sánchez-Delgado
TI  - $(G,\phi)$-crossed product on~$(G,\phi)$-quasiassociative algebras
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 46
EP  - 70
VL  - 24
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a3/
LA  - en
ID  - ADM_2017_24_1_a3
ER  - 
%0 Journal Article
%A Helena Albuquerque
%A Elisabete Barreiro
%A José M. Sánchez-Delgado
%T $(G,\phi)$-crossed product on~$(G,\phi)$-quasiassociative algebras
%J Algebra and discrete mathematics
%D 2017
%P 46-70
%V 24
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a3/
%G en
%F ADM_2017_24_1_a3
Helena Albuquerque; Elisabete Barreiro; José M. Sánchez-Delgado. $(G,\phi)$-crossed product on~$(G,\phi)$-quasiassociative algebras. Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 46-70. https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a3/

[1] H. Albuquerque, E. Barreiro and S. Benayadi, “Homogeneous symmetric antiassociative quasialgebras”, Comm. Algebra, 42:7 (2014), 2939–2955 | DOI | MR | Zbl

[2] H. Albuquerque, A. Elduque and J. M. Pérez-Izquierdo, “Wedderburn quasialgebras”, Port. Math., 65:2 (2008), 275–283 | DOI | MR | Zbl

[3] H. Albuquerque, A. Elduque and J. M. Pérez-Izquierdo, “$\displaystyle \mathbb{Z}_2$-quasialgebras”, Comm. Algebra, 30 (2002), 2161–2174 | DOI | MR | Zbl

[4] H. Albuquerque and S. Majid, “Quasialgebra structure of the octonions”, J. Algebra, 220 (1999), 188–224 | DOI | MR | Zbl

[5] H. Albuquerque and S. Majid, “$\mathbb{Z}_n$-quasialgebras,”, Matrices and group representations (Coimbra, 1998), Textos Mat. Sér. B, 19, Univ. Coimbra, Coimbra, 1999, 57–64 | MR | Zbl

[6] H. Albuquerque and A. P. Santana, “A note on quasiassociative algebras”, The J. A. Pereira da Silva birthday schrift, Textos Mat. Sér. B, 32, Univ. Coimbra, Coimbra, 2002, 5–16 | MR | Zbl

[7] Algebra Logic, 43:5 (2004), 307–315 | DOI | MR | Zbl

[8] H. Albuquerque and A. P. Santana, “Simple quasiassociative algebras”, Mathematical papers in honour of Eduardo Marques de Sá, Textos Mat. Sér. B, 39, Univ. Coimbra, Coimbra, 2006, 135–145 | MR | Zbl

[9] Yu. A. Drozd and V. V. Kirichenko, Finite dimensional algebras, translated from the 1980 Russian original by Vlastimil Dlab, Springer-Verlag Co., Berlin, 1994 | MR | Zbl

[10] G. Karpilovsky, Clifford theory for group representations, North-Holland Mathematics Studies, 156, North-Holland Publishing Co., Amsterdam, 1989 ; Notas de Matematica, 125 | MR | Zbl

[11] G. Karpilovsky, Induced modules over group algebras, North-Holland Mathematics Studies, 161, North-Holland Publishing Co., Amsterdam, 1990 | MR | Zbl

[12] C. Nǎstǎsescu and F. van Oystaeyen, Graded ring theory, North-Holland Mathematical Library, 28, North-Holland Publishing Co., Amsterdam–New York, 1982 | MR