Voir la notice de l'article dans Math-Net.Ru
@article{ADM_2017_24_1_a3, author = {Helena Albuquerque and Elisabete Barreiro and Jos\'e M. S\'anchez-Delgado}, title = {$(G,\phi)$-crossed product on~$(G,\phi)$-quasiassociative algebras}, journal = {Algebra and discrete mathematics}, pages = {46--70}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2017}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a3/} }
TY - JOUR AU - Helena Albuquerque AU - Elisabete Barreiro AU - José M. Sánchez-Delgado TI - $(G,\phi)$-crossed product on~$(G,\phi)$-quasiassociative algebras JO - Algebra and discrete mathematics PY - 2017 SP - 46 EP - 70 VL - 24 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a3/ LA - en ID - ADM_2017_24_1_a3 ER -
%0 Journal Article %A Helena Albuquerque %A Elisabete Barreiro %A José M. Sánchez-Delgado %T $(G,\phi)$-crossed product on~$(G,\phi)$-quasiassociative algebras %J Algebra and discrete mathematics %D 2017 %P 46-70 %V 24 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a3/ %G en %F ADM_2017_24_1_a3
Helena Albuquerque; Elisabete Barreiro; José M. Sánchez-Delgado. $(G,\phi)$-crossed product on~$(G,\phi)$-quasiassociative algebras. Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 46-70. https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a3/
[1] H. Albuquerque, E. Barreiro and S. Benayadi, “Homogeneous symmetric antiassociative quasialgebras”, Comm. Algebra, 42:7 (2014), 2939–2955 | DOI | MR | Zbl
[2] H. Albuquerque, A. Elduque and J. M. Pérez-Izquierdo, “Wedderburn quasialgebras”, Port. Math., 65:2 (2008), 275–283 | DOI | MR | Zbl
[3] H. Albuquerque, A. Elduque and J. M. Pérez-Izquierdo, “$\displaystyle \mathbb{Z}_2$-quasialgebras”, Comm. Algebra, 30 (2002), 2161–2174 | DOI | MR | Zbl
[4] H. Albuquerque and S. Majid, “Quasialgebra structure of the octonions”, J. Algebra, 220 (1999), 188–224 | DOI | MR | Zbl
[5] H. Albuquerque and S. Majid, “$\mathbb{Z}_n$-quasialgebras,”, Matrices and group representations (Coimbra, 1998), Textos Mat. Sér. B, 19, Univ. Coimbra, Coimbra, 1999, 57–64 | MR | Zbl
[6] H. Albuquerque and A. P. Santana, “A note on quasiassociative algebras”, The J. A. Pereira da Silva birthday schrift, Textos Mat. Sér. B, 32, Univ. Coimbra, Coimbra, 2002, 5–16 | MR | Zbl
[7] Algebra Logic, 43:5 (2004), 307–315 | DOI | MR | Zbl
[8] H. Albuquerque and A. P. Santana, “Simple quasiassociative algebras”, Mathematical papers in honour of Eduardo Marques de Sá, Textos Mat. Sér. B, 39, Univ. Coimbra, Coimbra, 2006, 135–145 | MR | Zbl
[9] Yu. A. Drozd and V. V. Kirichenko, Finite dimensional algebras, translated from the 1980 Russian original by Vlastimil Dlab, Springer-Verlag Co., Berlin, 1994 | MR | Zbl
[10] G. Karpilovsky, Clifford theory for group representations, North-Holland Mathematics Studies, 156, North-Holland Publishing Co., Amsterdam, 1989 ; Notas de Matematica, 125 | MR | Zbl
[11] G. Karpilovsky, Induced modules over group algebras, North-Holland Mathematics Studies, 161, North-Holland Publishing Co., Amsterdam, 1990 | MR | Zbl
[12] C. Nǎstǎsescu and F. van Oystaeyen, Graded ring theory, North-Holland Mathematical Library, 28, North-Holland Publishing Co., Amsterdam–New York, 1982 | MR