Voir la notice de l'article dans Math-Net.Ru
@article{ADM_2017_24_1_a2, author = {N. N. Semko and T. V. Velychko}, title = {On groups whose subgroups of infinite special rank are transitively normal}, journal = {Algebra and discrete mathematics}, pages = {34--45}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2017}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a2/} }
TY - JOUR AU - N. N. Semko AU - T. V. Velychko TI - On groups whose subgroups of infinite special rank are transitively normal JO - Algebra and discrete mathematics PY - 2017 SP - 34 EP - 45 VL - 24 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a2/ LA - en ID - ADM_2017_24_1_a2 ER -
N. N. Semko; T. V. Velychko. On groups whose subgroups of infinite special rank are transitively normal. Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 34-45. https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a2/
[1] A.I. Maltsev, “On groups of finite rank”, Mat. Sbornik, 22 (1948), 351–352 | MR | Zbl
[2] M.R. Dixon, L.A. Kurdachenko, I.Ya. Subbotin, “On various rank conditions in infinite groups”, Algebra Discrete Math., 4 (2007), 23–44 | MR
[3] M.R. Dixon, “Certain rank conditions on groups”, Noti di Matematica, 2 (2008), 151–175 | MR
[4] M.R. Dixon, L.A. Kurdachenko, O.O. Pypka, I.Ya Subbotin, “Groups satisfying certain rank conditions”, Algebra Discrete Math., 4 (2016), 23–44 | MR
[5] M.R. Dixon, M.J. Evans, H. Smith, “Locally (soluble-by-finite) groups with all proper insoluble subgroups of finite rank”, Arch. Math. (Basel), 68 (1997), 100–109 | DOI | MR | Zbl
[6] L.A. Kurdachenko, I.Ya. Subbotin, “Transitivity of normality and pronormal subgroups”, Combinatorial group theory, discrete groups, and number theory, 421 (2006), 201–212 | DOI | MR | Zbl
[7] V.I. Mysovskikh, “Subnormalizers and properties of embedding of subgroups in finite groups”, Zapiski Nauchnyh Semin. POMI, 265 (1999), 258–280 | MR
[8] V.V. Kirichenko, L.A. Kurdachenko, I.Ya. Subbotin, “Some related to pronormality subgroup families and the properties of a group”, Algebra Discrete Math., 11 (2011), 75–108 | MR | Zbl
[9] W. Gaschutz, “Gruppen in denen das Normalreilersein transitivist”, J. Reine. Angew. Math., 198 (1957), 87–92 | MR | Zbl
[10] D. J. S. Robinson, “Groups in which normality is a transitive relation”, Proc. Cambridge Philos. Soc., 60 (1964), 21–38 | DOI | MR | Zbl
[11] D.I. Zaitsev, “On locally soluble groups of finite rank”, Doklady AN USSR, 240 (1978), 257–259 | MR
[12] M.N. Myagkova, “On groups of finite rank”, Izvestiya AN USSR, ser. Math., 13 (1949), 495–512 | MR | Zbl
[13] R. Schmidt, Subgroups lattices of groups, Walter de Gruyter, 1994 | MR
[14] B.I. Plotkin, “Radical groups”, Mat. Sbornik, 37 (1955), 507–526 | MR
[15] M.R. Dixon, Sylow theory, formations and Fitting classes in locally finite groups, Singapore, 1994 | MR
[16] R. Baer, “Situation der Untergruppen und Struktur der Gruppe”, S.-B. Heidelberg Akad., 2 (1933), 12–17
[17] L.A Kurdachenko, J. Otal, I.Ya. Subbotin, Artinian modules over group rings, Basel, 2007 | MR