On groups whose subgroups of infinite special rank are transitively normal
Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 34-45.

Voir la notice de l'article dans Math-Net.Ru

This paper sheds a light on periodic soluble groups whose subgroups of infinite special rank are transitively normal.
Mots-clés : finite special rank, soluble group, periodic group, locally nilpotent radical, locally nilpotent residual, transitively normal subgroups.
@article{ADM_2017_24_1_a2,
     author = {N. N. Semko and T. V. Velychko},
     title = {On groups whose subgroups of infinite special rank are transitively normal},
     journal = {Algebra and discrete mathematics},
     pages = {34--45},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2017},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a2/}
}
TY  - JOUR
AU  - N. N. Semko
AU  - T. V. Velychko
TI  - On groups whose subgroups of infinite special rank are transitively normal
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 34
EP  - 45
VL  - 24
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a2/
LA  - en
ID  - ADM_2017_24_1_a2
ER  - 
%0 Journal Article
%A N. N. Semko
%A T. V. Velychko
%T On groups whose subgroups of infinite special rank are transitively normal
%J Algebra and discrete mathematics
%D 2017
%P 34-45
%V 24
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a2/
%G en
%F ADM_2017_24_1_a2
N. N. Semko; T. V. Velychko. On groups whose subgroups of infinite special rank are transitively normal. Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 34-45. https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a2/

[1] A.I. Maltsev, “On groups of finite rank”, Mat. Sbornik, 22 (1948), 351–352 | MR | Zbl

[2] M.R. Dixon, L.A. Kurdachenko, I.Ya. Subbotin, “On various rank conditions in infinite groups”, Algebra Discrete Math., 4 (2007), 23–44 | MR

[3] M.R. Dixon, “Certain rank conditions on groups”, Noti di Matematica, 2 (2008), 151–175 | MR

[4] M.R. Dixon, L.A. Kurdachenko, O.O. Pypka, I.Ya Subbotin, “Groups satisfying certain rank conditions”, Algebra Discrete Math., 4 (2016), 23–44 | MR

[5] M.R. Dixon, M.J. Evans, H. Smith, “Locally (soluble-by-finite) groups with all proper insoluble subgroups of finite rank”, Arch. Math. (Basel), 68 (1997), 100–109 | DOI | MR | Zbl

[6] L.A. Kurdachenko, I.Ya. Subbotin, “Transitivity of normality and pronormal subgroups”, Combinatorial group theory, discrete groups, and number theory, 421 (2006), 201–212 | DOI | MR | Zbl

[7] V.I. Mysovskikh, “Subnormalizers and properties of embedding of subgroups in finite groups”, Zapiski Nauchnyh Semin. POMI, 265 (1999), 258–280 | MR

[8] V.V. Kirichenko, L.A. Kurdachenko, I.Ya. Subbotin, “Some related to pronormality subgroup families and the properties of a group”, Algebra Discrete Math., 11 (2011), 75–108 | MR | Zbl

[9] W. Gaschutz, “Gruppen in denen das Normalreilersein transitivist”, J. Reine. Angew. Math., 198 (1957), 87–92 | MR | Zbl

[10] D. J. S. Robinson, “Groups in which normality is a transitive relation”, Proc. Cambridge Philos. Soc., 60 (1964), 21–38 | DOI | MR | Zbl

[11] D.I. Zaitsev, “On locally soluble groups of finite rank”, Doklady AN USSR, 240 (1978), 257–259 | MR

[12] M.N. Myagkova, “On groups of finite rank”, Izvestiya AN USSR, ser. Math., 13 (1949), 495–512 | MR | Zbl

[13] R. Schmidt, Subgroups lattices of groups, Walter de Gruyter, 1994 | MR

[14] B.I. Plotkin, “Radical groups”, Mat. Sbornik, 37 (1955), 507–526 | MR

[15] M.R. Dixon, Sylow theory, formations and Fitting classes in locally finite groups, Singapore, 1994 | MR

[16] R. Baer, “Situation der Untergruppen und Struktur der Gruppe”, S.-B. Heidelberg Akad., 2 (1933), 12–17

[17] L.A Kurdachenko, J. Otal, I.Ya. Subbotin, Artinian modules over group rings, Basel, 2007 | MR