Voir la notice de l'article dans Math-Net.Ru
@article{ADM_2017_24_1_a10, author = {Mykola Pratsiovytyi and Dmitriy Karvatsky}, title = {Jacobsthal-Lucas series and their applications}, journal = {Algebra and discrete mathematics}, pages = {169--180}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2017}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a10/} }
TY - JOUR AU - Mykola Pratsiovytyi AU - Dmitriy Karvatsky TI - Jacobsthal-Lucas series and their applications JO - Algebra and discrete mathematics PY - 2017 SP - 169 EP - 180 VL - 24 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a10/ LA - en ID - ADM_2017_24_1_a10 ER -
Mykola Pratsiovytyi; Dmitriy Karvatsky. Jacobsthal-Lucas series and their applications. Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 169-180. https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a10/
[1] B. Jessen, A. Wintner, “Distribution functions and the Riemann zeta function”, Trans. Amer. Math. Soc., 38:1 (1935), 48–88 | DOI | MR
[2] D. M. Karvatsky, “Representation of real numbers by infinitesimal generalized Fibonacci sequences”, Trans. Natl. Pedagog. Mykhailo Drahomanov Univ. Ser. 1. Phys. Math., 15 (2013), 56–73 (Ukrainian)
[3] D. M. Karvatsky, “Properties of distribution of random incomplete sum of convergent positive series whose terms are elements of generalized Fibonacci sequence”, Bukovinian Mathematical Journal, 3:1 (2015), 52–59 (Ukrainian) | Zbl
[4] D. M. Karvatsky, N. M. Vasylenko, “Mathematical structures in the spaces of generalized Fibonacci sequences”, Trans. Natl. Pedagog. Mykhailo Drahomanov Univ. Ser. 1. Phys. Math., 13:1 (2012), 118–127 (Ukrainian)
[5] P. Lévy, “Sur les séries dont les termes sont des variables éventuelles indépendantes”, Studia Math., 3:1 (1931), 119–155 | DOI
[6] J. E. Nymann, R. A. Sáenz, “On a paper of Guthrie and Nymann on subsums of infinite series”, Colloq. Math., 83:1 (2000), 1–4 | DOI | MR | Zbl
[7] M. V. Pratsiovytyi, Fractal approach to investigation of singular probability distributions, Natl. Pedagog. Mykhailo Drahomanov Univ. Publ., Kyiv, 1998 (Ukrainian)
[8] M. Prévost, “On the irrationality of $\sum\frac{t^n}{A\alpha^n+B\beta^n}$”, J. Number Theory, 73:2 (1998), 139–161 | DOI | MR | Zbl