Jacobsthal-Lucas series and their applications
Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 169-180.

Voir la notice de l'article dans Math-Net.Ru

In this paper we study the properties of positive series such that its terms are reciprocals of the elements of Jacobsthal-Lucas sequence ($J_{n+2}=2J_{n+1}+J_n$, $J_1=2$, $J_2=1$). In particular, we consider the properties of the set of incomplete sums as well as their applications. We prove that the set of incomplete sums of this series is a nowhere dense set of positive Lebesgue measure. Also we study singular random variables of Cantor type related to Jacobsthal-Lucas sequence.
Mots-clés : Jacobsthal-Lucas sequence, the set of incomplete sums, singular random variable, Hausdorff-Besicovitch dimension.
@article{ADM_2017_24_1_a10,
     author = {Mykola Pratsiovytyi and Dmitriy Karvatsky},
     title = {Jacobsthal-Lucas series and their applications},
     journal = {Algebra and discrete mathematics},
     pages = {169--180},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2017},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a10/}
}
TY  - JOUR
AU  - Mykola Pratsiovytyi
AU  - Dmitriy Karvatsky
TI  - Jacobsthal-Lucas series and their applications
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 169
EP  - 180
VL  - 24
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a10/
LA  - en
ID  - ADM_2017_24_1_a10
ER  - 
%0 Journal Article
%A Mykola Pratsiovytyi
%A Dmitriy Karvatsky
%T Jacobsthal-Lucas series and their applications
%J Algebra and discrete mathematics
%D 2017
%P 169-180
%V 24
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a10/
%G en
%F ADM_2017_24_1_a10
Mykola Pratsiovytyi; Dmitriy Karvatsky. Jacobsthal-Lucas series and their applications. Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 169-180. https://geodesic-test.mathdoc.fr/item/ADM_2017_24_1_a10/

[1] B. Jessen, A. Wintner, “Distribution functions and the Riemann zeta function”, Trans. Amer. Math. Soc., 38:1 (1935), 48–88 | DOI | MR

[2] D. M. Karvatsky, “Representation of real numbers by infinitesimal generalized Fibonacci sequences”, Trans. Natl. Pedagog. Mykhailo Drahomanov Univ. Ser. 1. Phys. Math., 15 (2013), 56–73 (Ukrainian)

[3] D. M. Karvatsky, “Properties of distribution of random incomplete sum of convergent positive series whose terms are elements of generalized Fibonacci sequence”, Bukovinian Mathematical Journal, 3:1 (2015), 52–59 (Ukrainian) | Zbl

[4] D. M. Karvatsky, N. M. Vasylenko, “Mathematical structures in the spaces of generalized Fibonacci sequences”, Trans. Natl. Pedagog. Mykhailo Drahomanov Univ. Ser. 1. Phys. Math., 13:1 (2012), 118–127 (Ukrainian)

[5] P. Lévy, “Sur les séries dont les termes sont des variables éventuelles indépendantes”, Studia Math., 3:1 (1931), 119–155 | DOI

[6] J. E. Nymann, R. A. Sáenz, “On a paper of Guthrie and Nymann on subsums of infinite series”, Colloq. Math., 83:1 (2000), 1–4 | DOI | MR | Zbl

[7] M. V. Pratsiovytyi, Fractal approach to investigation of singular probability distributions, Natl. Pedagog. Mykhailo Drahomanov Univ. Publ., Kyiv, 1998 (Ukrainian)

[8] M. Prévost, “On the irrationality of $\sum\frac{t^n}{A\alpha^n+B\beta^n}$”, J. Number Theory, 73:2 (1998), 139–161 | DOI | MR | Zbl