Equivalence of Carter diagrams
Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 138-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the equivalence relation ρ on the set of Carter diagrams and construct an explicit transformation of any Carter diagram containing l-cycles with l>4 to an equivalent Carter diagram containing only 4-cycles. Transforming one Carter diagram Γ1 to another Carter diagram Γ2 we can get a certain intermediate diagram Γ which is not necessarily a Carter diagram. Such an intermediate diagram is called a connection diagram. The relation ρ is the equivalence relation on the set of Carter diagrams and connection diagrams. The properties of connection and Carter diagrams are studied in this paper. The paper contains an alternative proof of Carter's classification of admissible diagrams.
Keywords: Dynkin diagrams, Carter diagrams, Weyl group
Mots-clés : cycles.
@article{ADM_2017_23_1_a7,
     author = {Rafael Stekolshchik},
     title = {Equivalence of {Carter} diagrams},
     journal = {Algebra and discrete mathematics},
     pages = {138--179},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2017},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2017_23_1_a7/}
}
TY  - JOUR
AU  - Rafael Stekolshchik
TI  - Equivalence of Carter diagrams
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 138
EP  - 179
VL  - 23
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2017_23_1_a7/
LA  - en
ID  - ADM_2017_23_1_a7
ER  - 
%0 Journal Article
%A Rafael Stekolshchik
%T Equivalence of Carter diagrams
%J Algebra and discrete mathematics
%D 2017
%P 138-179
%V 23
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2017_23_1_a7/
%G en
%F ADM_2017_23_1_a7
Rafael Stekolshchik. Equivalence of Carter diagrams. Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 138-179. https://geodesic-test.mathdoc.fr/item/ADM_2017_23_1_a7/

[1] R. W. Carter, “Conjugacy classes in the Weyl group”, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69), Springer, Berlin, 1970, 297–318 | DOI | MR

[2] R. W. Carter, “Conjugacy classes in the Weyl group”, Compositio Math., 25 (1972), 1–59 | MR | Zbl

[3] R. W. Carter, G. B. Elkington, “A Note on the Parametrization of Conjugacy Classes”, J. Algebra, 20 (1972), 350–354 | DOI | MR | Zbl

[4] V. Kac, “Infinite root systems, representations of graphs and invariant theory”, Invent. Math., 56:1 (1980), 57–92 | DOI | MR | Zbl

[5] D. Madore, The $E_8$ root system, 2010 http://www.madore.org/<nobr>$\sim$</nobr>david/math/e8rotate.html

[6] R. Stekolshchik, Notes on Coxeter Transformations and the McKay Correspondence, Springer Monographs in Mathematics, Springer, 2008, XX+240 pp. | MR | Zbl

[7] R. Stekolshchik, Root systems and diagram calculus. I. Regular extensions of Carter diagrams and the uniqueness of conjugacy classes, arXiv: 1005.2769v6

[8] J. Stembridge, Coxeter Planes, 2007 http://www.math.lsa.umich.edu/<nobr>$\sim$</nobr>jrs/coxplane.html