Invariants of finite solvable groups
Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 107-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article contains the results about invariants of solvable groups with given structure of Sylow subgroups and information about the nilpotent π-length of π-solvable groups. Open questions are formulated.
Keywords: derived length, nilpotent lengths, p-length, π-length, nilpotent π-length, rank, p-rank, metacyclic group, bicyclic group
Mots-clés : π-solvable group.
@article{ADM_2012_14_1_a8,
     author = {Viktor Monakhov and Alexander Trofimuk},
     title = {Invariants of finite solvable groups},
     journal = {Algebra and discrete mathematics},
     pages = {107--131},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a8/}
}
TY  - JOUR
AU  - Viktor Monakhov
AU  - Alexander Trofimuk
TI  - Invariants of finite solvable groups
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 107
EP  - 131
VL  - 14
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a8/
LA  - en
ID  - ADM_2012_14_1_a8
ER  - 
%0 Journal Article
%A Viktor Monakhov
%A Alexander Trofimuk
%T Invariants of finite solvable groups
%J Algebra and discrete mathematics
%D 2012
%P 107-131
%V 14
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a8/
%G en
%F ADM_2012_14_1_a8
Viktor Monakhov; Alexander Trofimuk. Invariants of finite solvable groups. Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 107-131. https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a8/

[1] S. A. Chunikhin, Subgroups of finite groups, Nauka i Tekhnika, Minsk, 1964 | Zbl

[2] L. A. Shemetkov, Formations of finite groops, Nauka, Moscow, 1978 | MR | Zbl

[3] V. S. Monakhov, Introduction to the theory of finite groups and their classes, Vysheishaya shkola, Minsk, 2006

[4] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[5] P. Hall, “The $p$-lengh of a $p$-soluble groups and reduction theorems for Burnside's problem”, Proc. London Math. Soc., 3:7 (1956), 1–42 | DOI | Zbl

[6] B. Huppert, Endliche Gruppen, v. II, Springer-Verlag, Berlin–Heidelberg–New York, 1982

[7] A. G. Anishchenko, V. S. Monakhov, “Central intersections and $p$-length of $p$-solvable groups”, Dokl. AN BSSR, 21:11 (1977), 968–971 | MR | Zbl

[8] V. D. Mazurov, “The $p$-length of solvable groups”, Proc. 6 All-Union Symp. Group Theory (Kiev, 1980), 50–60 | MR | Zbl

[9] L. A. Shemetkov, “On partially soluble finite groups”, Mat. Sb., 72:1 (1967), 97–-107 | MR

[10] S. A. Chunikhin, L. A. Shemetkov, “Finite groups”, Itogi Nauki. Ser. Mat. Algebra. Topol. Geom., Moscow; VINITI, 1971, 7–-70 | Zbl

[11] L. A. Shemetkov, “On the $p$-length of arbitrary finite groups”, Dokl. AN BSSR, 13:5 (1969), 394–395 | MR | Zbl

[12] Kourov's writing-book: unsolvable questions of the theory of groups, 16th edition, Mathematics institute of S. L. Sobolev, Novosibirsk, 2006

[13] V. D. Mazurov, “Finite groups with metacyclic Sylow 2-subgroups”, Sib. Mat. Zh., 8:5 (1967), 966–982 | DOI | MR | Zbl

[14] A. R. Camina, T. M. Gagen, “Groups with metacyclic Sylow 2-subgroups”, Canad. J. Math., 21 (1969), 1234–1237 | DOI | MR | Zbl

[15] D. Chillag, J. Sonn, “Sylow-metacyclic groups and $Q$-admissibility”, Isr. J. Math., 40:3–4 (1981), 307–323 | DOI | MR | Zbl

[16] B. Huppert, “Uber das Produkt von paarweise vertauschbaren zyklischen Gruppen”, Math. Z., 58 (1953), 243–264 | DOI | MR | Zbl

[17] N. Ito, “Uber das Produkt von zwei zyklischen 2-gruppen”, Pub. Math., 4 (1956), 517–520 | MR | Zbl

[18] N. Ito, A. Oxara, “Sur les Groupes Factorisables par Deux $2$-Groupes Cycliques. I; II”, Pros. Japan Acad. Tokyo, 32 (1956), 736–740 ; 741–743 | DOI | MR | Zbl

[19] N. Blackburn, “Uber das Produkt von zwei zyklischen 2-gruppen”, Math. Zeitschr., 68 (1958), 422–427 | DOI | MR | Zbl

[20] J. Douglas, “On the supersolvability of bicyclic groups”, Proc. Nat. Acad. Sci., 49 (1961), 1493–1495 | DOI | MR

[21] The GAP Group, GAP-Groups, Algorithms, and Programming, Ver. 4.4.12 , 2009 http://www.gap-system.org

[22] V. S. Monakhov, E. E. Gribovskaya, “Maximal and Sylow subgroups of solvable finite groups”, Mat. Zametki, 70:4 (2001), 603–612 | DOI | MR | Zbl

[23] V. S. Monakhov, A. A. Trofimuk, “Finite solvable groups in which the Sylow $p$-subgroups are either bicyclic or of order $p^3$”, Fundam. Prikl. Mat., 15:2 (2009), 121–131 | MR

[24] B. Huppert, N. Blackburn, Endliche Gruppen, v. III, Springer, Berlin–Heidelberg–New York, 1982

[25] Ya. G. Berkovich, “On solvable groups of finite order”, Mat. Sb., 74:1 (1967), 75–92 | MR

[26] R. Maier, “Faktorisierte $p$-auflösbare Gruppen”, Arch. Math., 27 (1975), 576–583 | DOI | MR

[27] V. D. Mazurov, Remarks on finite groups, Editorial board “Sib. mat. journal”, Novosibirsk, 1974

[28] V. D. Mazurov, The XII All-Union algebraic col., Theses of messages, v. 1, Sverdlovsk, 1973

[29] V. S. Monakhov, “On the 3-solvability of finite factorable groups”, Dokl. NAN Belarus, 45:3 (2001), 32–36 | MR | Zbl

[30] A. R. Camina, T. M. Gagen, “Some non-solvable factorizable groups”, J. Math., 14:1 (1970), 91–98 | MR | Zbl

[31] V. S. Monakhov, “The product of two groups, one of which contains a cyclic subgroup of index $\le 2$”, Mat. Zametki, 16:2 (1974), 285–295 | MR

[32] M. Asaad, V. S. Monakhov, “Some sufficient conditions for a finite group to be supersolvable”, Acta Mathematica Hungarica, 135:1–2 (2012), 168–173 | DOI | MR | Zbl

[33] V. S. Monakhov, “On soluble finite groups with Sylow subgroups of small rank”, Dokl. NAN Belarus, 46:2 (2002), 25–28 | MR | Zbl

[34] V. S. Monakhov, “Indices of Maximal Subgroups of Finite Soluble Groups”, Algebra Logika, 43:4 (2004), 411–424 | DOI | MR | Zbl

[35] V. S. Monakhov, A. A. Trofimuk, “Finite groups such that their Sylow subgroups are cyclic or have order $p^2$”, Proceedings of the F. Skorina Gomel State University, 47:2 (2008), 139–145

[36] W. Gashutz, “Existenz und Konjugiertsein von Untergruppen, die in endlichen auflosbaren Gruppen durch gewisse Indexschranken definiert sind”, J. Algebra, 53:2 (1978), 389–394 | DOI | MR

[37] V. S. Monakhov, “Towards Huppert-–Shemetkov's theorem”, Tr. Inst. Mat., 16, no. 1, 2008, 64–66

[38] B. Huppert, “Normalteiler und maximale Untergruppen endlicher Gruppen”, Math. Zeitschr., 60 (1954), 409–434 | DOI | MR | Zbl

[39] A. A. Trofimuk, “Derived length of finite groups with restrictions on Sylow subgroups”, Mat. Zametki, 87:2 (2010), 287–293 | DOI | MR | Zbl

[40] H. Zassenhaus, “Beweis eines Zatzes uber diskrete Gruppen”, Abh. Math. Sem. Univ. Hamburg, 12 (1938), 289–312 | DOI

[41] J. D. Dixon, “The solvable length of a solvable linear groups”, Math. Z., 12 (1968), 151–158) | MR

[42] Y. Berkovich, “Solvable permutation groups of maximal derived length”, Algebra Colloquium, 4:2 (1997), 175–186 | MR | Zbl

[43] M. F. Newman, “The solvable length of a solvable linear groups”, Math. Z., 126 (1972), 59–70 | DOI | MR | Zbl

[44] P. P. Palfy, “Bounds for linear groups of odd order”, Rend. Circ. mat. Palermo. Ser. 2, 39:23 (1990), 253–263 | MR

[45] A. A. Trofimuk, “On Fitting chief factors of finite solvable group”, The international conference on algebra and geometry, Abstracts (Ekaterinburg, August 22–27, 2011), 193–194

[46] V. S. Monakhov, A. A. Trofimuk, “On a finite group having a normal series whose factors have bicyclic Sylow subgroups”, Communications in algebra, 39:9 (2011), 3178–3186 | DOI | MR | Zbl

[47] J. Rose, “Sufficient conditions for the existence of ordered Sylow towers in finite groups”, J. Algebra, 28 (1974), 116–126 | DOI | MR | Zbl

[48] V. S. Monakhov, A. A. Trofimuk, “On finite soluble groups of fixed rank”, Sibirsk. Mat. Zh., 52:5 (2011), 1123–1137 | MR | Zbl

[49] N. S. Chernikov, A. P. Petravchuk, “On the $\pi$-length of finite $\pi$-solvable group”, Infinite groups and adjoining algebraic structures, Trudy Inst. Mat. AN Ukraine, Kiev, 2011, 393–405

[50] L. S. Kazarin, “Soluble product of groups”, Infinite groups 94, Walter de Gruyter, Berlin–New York, 1995, 111–123 | MR

[51] R. Carter, B. Fischer, T. Hawkes, “Extreme Classes of finite soluble groups”, J. Algebra, 9:3 (1968), 285–313 | DOI | MR

[52] M. Numata, “On the $\pi$-nilpotent length of $\pi$-solvable groups”, Osaka J. Math., 8 (1971), 447–451 | MR | Zbl

[53] V. S. Monakhov, “About finite solvable groups”, Algebra and the theory of numbers: Modern problems and applications, Theses of reports of the VI International conference devoted to the 100 anniversary of N. G. Chudakov (Saratov, September 13–17, 2004)

[54] V. S. Monakhov, O. A. Shpyrko, “On the nilpotent $\pi$-length of a finite $\pi$-solvable group”, Diskr. Mat., 13:3 (2001), 145–152 | DOI | MR | Zbl

[55] O. A. Shpyrko, “Hall subgroups and the nilpotent $\pi$-length of $\pi$-solvable group”, Vestsi of NAN Belarus. Ser. fiz. mat. nauk, 2 (2001), 48–50 | MR

[56] K. Doerk, “Über die nilpotente Länge maximaler Untergruppen bei endlichen auflösbaren Gruppen”, Rend. Sem. Mat. Univ. Padova, 91 (1994), 19–21 | MR | Zbl

[57] A. Ballester-Bolinches, M. D. Perez-Ramos, “A note on the $\frak F$-lengh of maximal subgroups in finite soluble groups”, Math. Nachr., 166 (1994), 67–70 | DOI | MR | Zbl

[58] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[59] V. S. Monakhov, O. A. Shpyrko, “On the nilpotent $\pi$-length of maximum subgroups in finite $\pi$-soluble groups”, 6th International Algebraic Conference in Ukraine, Abstracts (Kamyanets-Podilsky, July 1–7, 2007)

[60] O. A. Shpyrko, “On finite $\pi$-solvable groupswith given Sylow subgroups”, Proceedings of the F. Skorina Gomel State University, 1:1 (1999), 127–134

[61] O. A. Shpyrko, “On intersection Hall subgroups and $\pi$-length of $\pi$-solvable group”, Vestnik Vitebskogo universiteta, 18:4 (2000), 82–89

[62] V. S. Monakhov, O. A. Shpyrko, On the nilpotent $\pi$-length of finite $\pi$-soluble groups, Preprint of the F. Skorina Gomel State University No 92, 2000

[63] O. A. Shpyrko, On the nilpotent $\pi$-length of finite $\pi$-soluble groups, The dissertation on competition of the scientist degrees of the candidate of physical and mathematical sciences, Gomel, 2001

[64] O. A. Shpyrko, “On the nilpotent $\pi$-length of finite $\pi$-soluble groups with restriction on subgroups”, M. V. Lomonosov Moscow State University. Mathematics. Mechanics, 63:1 (2008), 21–25 | MR | Zbl