Groups with many pronormal and transitively normal subgroups
Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 84-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup H of a group G is said to be transitively normal in G, if H is normal in every subgroup KH such that H is subnormal in K. We described some infinite groups, whose non–finitely generated subgroups are transitively normal.
Keywords: radical group, locally nilpotent group, transitively normal subgroup, non finitely generated subgroup.
Mots-clés : soluble group
@article{ADM_2012_14_1_a7,
     author = {L. A. Kurdachenko and N. N. Semko (Jr.) and I. Ya. Subbotin},
     title = {Groups with many pronormal and transitively normal subgroups},
     journal = {Algebra and discrete mathematics},
     pages = {84--106},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a7/}
}
TY  - JOUR
AU  - L. A. Kurdachenko
AU  - N. N. Semko (Jr.)
AU  - I. Ya. Subbotin
TI  - Groups with many pronormal and transitively normal subgroups
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 84
EP  - 106
VL  - 14
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a7/
LA  - en
ID  - ADM_2012_14_1_a7
ER  - 
%0 Journal Article
%A L. A. Kurdachenko
%A N. N. Semko (Jr.)
%A I. Ya. Subbotin
%T Groups with many pronormal and transitively normal subgroups
%J Algebra and discrete mathematics
%D 2012
%P 84-106
%V 14
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a7/
%G en
%F ADM_2012_14_1_a7
L. A. Kurdachenko; N. N. Semko (Jr.); I. Ya. Subbotin. Groups with many pronormal and transitively normal subgroups. Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 84-106. https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a7/

[1] Kurdachenko L. A., Subbotin I. Ya., “Transitivity of normality and pronormal subgroups”, Combinatorial group Theory, discrete groups, and number theory, AMS Special session on infinite groups (October 8–9, 2005, Bard College), Contemporary Mathematics, 421, American Mathematical Society, 2006, 201–212 | DOI | MR | Zbl

[2] Ba M. S., Borevich Z. I., “On arrangement of intermediate subgroups”, Rings and Linear Groups, Kubanskij Univ., Krasnodar, 1988, 14–41 | MR

[3] Baer R., “Situation der Untergruppen und Struktur der Gruppe”, S.-B. Heidelberg Akad., 2 (1933), 12–17

[4] Gaschütz W., “Gruppen in denen das Normalreilersein transitivist”, J. Reine Angew. Math., 198 (1957), 87–92 | MR

[5] Robinson D. J. S., “Groups in which normality is a transitive relation”, Proc. Cambridge Philos. Soc., 60 (1964), 21–38 | DOI | MR

[6] Peng T. A., “Finite groups with pronormal subgroups”, Proc. Amer. Math. Soc., 20 (1969), 232–234 | DOI | MR | Zbl

[7] Kuzennyi N. F., Subbotin I. Ya., “Locally soluble groups in which all infinite subgroups are pronormal”, Izv. Vyssh. Ucheb. Zaved., Mat., 1988, no. 11, 77–79 | MR

[8] Ol'shanskii A. Yu., Geometry of defining relations in groups, Nauka, Moscow, 1989, 447 pp. | MR

[9] Plotkin B. I., “Radical groups”, Mat. Sbornik, 37 (1955), 507–523 | MR

[10] Kurdachenko L. A., Pylaev V. V., “On groups which are dual to Dedekind groups”, Reports of Academy of Sciences of Ukrain. SSR, 1989, no. 10, 21–22 | MR | Zbl

[11] Cutolo G., “On groups satisfying the maximal condition on non-normal subgroups”, Rivista Mat. pura et applicata, 91 (1991), 49–59 | MR

[12] Cutolo G., Kurdachenko L. A., “Groups with a maximality condition for some non-normal subgroups”, Geometria Dedicata, 55 (1995), 279–292 | DOI | MR | Zbl

[13] Hall M., The theory of groups, Macmillan, New York, 1959, 172 pp. | MR | Zbl

[14] Hall P., “Finiteness conditions for soluble groups”, Proc. London Math. Soc., 4 (1954), 419–436 | DOI | MR | Zbl

[15] Zaitsev D. I., “On locally soluble groups of infinite rank”, Doklady AN USSR, 240:2 (1978), 257–259

[16] Fuchs L., Infinite abelian groups, v. 1, Academic Press, New York, 1970, 336 pp. | MR | Zbl

[17] Ballester-Bolinches A., Esteban-Romero R., “Sylow permutable subnormal subgroups of finite groups”, Journal Algebra, 251 (2002), 727–738 | DOI | MR | Zbl

[18] Huppert B., “Zur Sylowstruktur auflösbarer Gruppen”, Archiv Math., 12 (1961), 161–169 | DOI | MR | Zbl

[19] Ballester-Bolinches A., Kurdachenko L. A., Otal J., Pedraza T., “Infinite groups with many permutable subgroups”, Revista Mat. Iberoamericana, 24:3 (2008), 745 –764 | DOI | MR | Zbl

[20] Kurosh A. G., The theory of groups, Nauka, Moskow, 1967, 272 pp. | MR | Zbl

[21] Maltsev A. I., “On certain classes of infinite soluble groups”, Mat. Sbornik, 28:3 (1951), 567–588 | MR

[22] Zaitsev D. I., Kurdachenko L. A., Tushev A. V., “The modules over nilpotent groups of finite rank”, Algebra and logic, 24:6 (1985), 412–436 | DOI | MR

[23] Charin V. S., “On groups possessing ascending invariant series”, Mat. Sbornik, 41:3 (2008), 297–316

[24] Schmidt R., Subgroups lattices of groups, Walter de Gruyter, Berlin, 1994 | MR | Zbl

[25] Kurdachenko L. A., Otal J., Subbotin I. Ya., Artinian modules over group rings, Birkhäuser, Basel, 2007, 245 pp. | MR | Zbl

[26] Chernikov S. N., “On periodic automorphism groups of extremal groups”, Math. Notes, 4:1 (1968), 543–545 | DOI

[27] Heineken H., Kurdachenko L. A., “Groups with subnormality for all subgroups that are non-finitely generated”, Annali di Matematica pura ed applicata, 169 (1995), 203–232 | DOI | MR | Zbl