Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2012_14_1_a6, author = {Pawel Jasionowski}, title = {Matrix characterization of symmetry groups of boolean functions}, journal = {Algebra and discrete mathematics}, pages = {71--83}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2012}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a6/} }
Pawel Jasionowski. Matrix characterization of symmetry groups of boolean functions. Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 71-83. https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a6/
[1] N. L. Biggs, A. T. White, Permutation groups and combinatorial structures, London Math. Soc., Lecture Notes Series, 33, Cambridge Univ. Press, Cambridge, 1979 | MR | Zbl
[2] P. Cameron, Permutation Groups, Cambridge University Press, Cambridge, 1999 | MR
[3] P. Clote, E. Kranakis, “Boolean function invariance groups, and parallel complexity”, J. Comput., 20:3 (1991), 553–590 | MR | Zbl
[4] P. Clote, E. Kranakis, Boolean function and Computation Models, Springer, Berlin, 2002 | MR | Zbl
[5] M. Grech, A. Kisielewicz, “Direct product of automorphism groups of colored graphs”, Discrete Math., 283 (2004), 81–86 | DOI | MR | Zbl
[6] M. Grech, “Regular symmetric groups of boolean function”, Discrete Math., 310 (2010), 2877–2882 | DOI | MR | Zbl
[7] A. Kisielewicz, “Symmetry groups of Boolean functions and constructions of permutation groups”, Journal of Algebra, 199 (1998), 379–403 | DOI | MR | Zbl
[8] W. Peisert, “Direct product and uniqueness of automorphism groups of graphs”, Discrete Math., 207 (1999), 189–197 | DOI | MR | Zbl
[9] H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964 | MR | Zbl
[10] W. Xiao, “Linear symmetries of Boolean functions”, Discrete Applied Math., 149 (2005), 192–199 | DOI | MR | Zbl