On locally soluble AFN-groups
Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 37-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let A be an RG-module, where R is a commutative ring, G is a locally soluble group, CG(A)=1, and each proper subgroup H of G for which A/CA(H) is not a noetherian R-module, is finitely generated. We describe the structure of a locally soluble group G with these conditions and the structure of G under consideration if G is a finitely generated soluble group and the quotient module A/CA(G) is not a noetherian R-module.
Mots-clés : locally soluble group, noetherian module, group ring.
@article{ADM_2012_14_1_a4,
     author = {Olga Yu. Dashkova},
     title = {On locally soluble $AFN$-groups},
     journal = {Algebra and discrete mathematics},
     pages = {37--48},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a4/}
}
TY  - JOUR
AU  - Olga Yu. Dashkova
TI  - On locally soluble $AFN$-groups
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 37
EP  - 48
VL  - 14
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a4/
LA  - en
ID  - ADM_2012_14_1_a4
ER  - 
%0 Journal Article
%A Olga Yu. Dashkova
%T On locally soluble $AFN$-groups
%J Algebra and discrete mathematics
%D 2012
%P 37-48
%V 14
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a4/
%G en
%F ADM_2012_14_1_a4
Olga Yu. Dashkova. On locally soluble $AFN$-groups. Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 37-48. https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a4/

[1] R. E. Phillips, “The structure of groups of finitary transformations”, J. Algebra, 119:2 (1988), 400–448 | DOI | MR | Zbl

[2] R. E. Phillips, “Finitary linear groups: a survey”, Finite and locally finite groups, NATO ASI ser. C Math. Phys. Sci., 471, Kluver Acad. Publ., Dordreht, 1995, 111–146 | MR | Zbl

[3] L. A. Kurdachenko, J. M. Muñoz-Escolano, J. Otal, “Antifinitary linear groups”, Forum Math., 20:1 (2008), 7–44 | DOI | MR

[4] B. A. F. Wehrfritz, “Artinian-finitary groups over commutative rings”, Illinois J. Math., 47:1–2 (2003), 551–565 | MR | Zbl

[5] B. A. F. Wehrfritz, “Artinian-finitary groups over commutative rings and non-commutative rings”, J. Lond. Math. Soc. (2), 70:2 (2004), 325–340 | DOI | MR | Zbl

[6] B. A. F. Wehrfritz, “Artinian-finitary groups are locally normal-finitary”, J. Algebra, 287:2 (2005), 417–431 | DOI | MR | Zbl

[7] L. A. Kurdachenko, “On groups with minimax classes of conjugate elements”, Infinite groups and adjoining algebraic structures, Academy of Sciences of the Ukraine. Institute of Mathematics, Kyev, 1993, 160–177 | MR

[8] D. J. S. Robinson, Finiteness condition and generalized soluble groups, v. 1, 2, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin–Heidelberg–New York, 1972

[9] L. A. Kurdachenko, “Nonperiodic FC-groups and related classes of locally normal groups and abelian groups without torsion”, Sib. Math. J., 287:2 (1986), 227–236 | MR

[10] B. A. F. Wehrfritz, Infinite linear groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, New York–Heidelberg–Berlin, 1973 | MR | Zbl