Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2012_14_1_a4, author = {Olga Yu. Dashkova}, title = {On locally soluble $AFN$-groups}, journal = {Algebra and discrete mathematics}, pages = {37--48}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2012}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a4/} }
Olga Yu. Dashkova. On locally soluble $AFN$-groups. Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 37-48. https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a4/
[1] R. E. Phillips, “The structure of groups of finitary transformations”, J. Algebra, 119:2 (1988), 400–448 | DOI | MR | Zbl
[2] R. E. Phillips, “Finitary linear groups: a survey”, Finite and locally finite groups, NATO ASI ser. C Math. Phys. Sci., 471, Kluver Acad. Publ., Dordreht, 1995, 111–146 | MR | Zbl
[3] L. A. Kurdachenko, J. M. Muñoz-Escolano, J. Otal, “Antifinitary linear groups”, Forum Math., 20:1 (2008), 7–44 | DOI | MR
[4] B. A. F. Wehrfritz, “Artinian-finitary groups over commutative rings”, Illinois J. Math., 47:1–2 (2003), 551–565 | MR | Zbl
[5] B. A. F. Wehrfritz, “Artinian-finitary groups over commutative rings and non-commutative rings”, J. Lond. Math. Soc. (2), 70:2 (2004), 325–340 | DOI | MR | Zbl
[6] B. A. F. Wehrfritz, “Artinian-finitary groups are locally normal-finitary”, J. Algebra, 287:2 (2005), 417–431 | DOI | MR | Zbl
[7] L. A. Kurdachenko, “On groups with minimax classes of conjugate elements”, Infinite groups and adjoining algebraic structures, Academy of Sciences of the Ukraine. Institute of Mathematics, Kyev, 1993, 160–177 | MR
[8] D. J. S. Robinson, Finiteness condition and generalized soluble groups, v. 1, 2, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin–Heidelberg–New York, 1972
[9] L. A. Kurdachenko, “Nonperiodic FC-groups and related classes of locally normal groups and abelian groups without torsion”, Sib. Math. J., 287:2 (1986), 227–236 | MR
[10] B. A. F. Wehrfritz, Infinite linear groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, New York–Heidelberg–Berlin, 1973 | MR | Zbl