The representation type of elementary abelian p-groups with respect to the modules of constant Jordan type
Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 29-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the representation type of elementary abelian p-groups with respect to the modules of constant Jordan type and offer two conjectures (for such modules) in the general case, one of which suggests that any non-wild group is of finite representation type in each dimension.
Keywords: elementary abelian groups, matrix representations, representation type
Mots-clés : constant Jordan type.
@article{ADM_2012_14_1_a3,
     author = {Vitalij M. Bondarenko and Iryna V. Lytvynchuk},
     title = {The representation type of elementary abelian $p$-groups with respect to the modules of constant {Jordan} type},
     journal = {Algebra and discrete mathematics},
     pages = {29--36},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a3/}
}
TY  - JOUR
AU  - Vitalij M. Bondarenko
AU  - Iryna V. Lytvynchuk
TI  - The representation type of elementary abelian $p$-groups with respect to the modules of constant Jordan type
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 29
EP  - 36
VL  - 14
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a3/
LA  - en
ID  - ADM_2012_14_1_a3
ER  - 
%0 Journal Article
%A Vitalij M. Bondarenko
%A Iryna V. Lytvynchuk
%T The representation type of elementary abelian $p$-groups with respect to the modules of constant Jordan type
%J Algebra and discrete mathematics
%D 2012
%P 29-36
%V 14
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a3/
%G en
%F ADM_2012_14_1_a3
Vitalij M. Bondarenko; Iryna V. Lytvynchuk. The representation type of elementary abelian $p$-groups with respect to the modules of constant Jordan type. Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 29-36. https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a3/

[1] J. F. Carlson, E. M. Friedlander, J. Pevtsova, “Modules of constant Jordan type”, J. Reine Angew. Math., 614 (2008), 191–234 | DOI | MR | Zbl

[2] J. F. Carlson, E. M. Friedlander, “Exact category of modules of constant Jordan type”, Progr. in Math., 269, 2009, 267–290 | MR | Zbl

[3] D. J. Benson, “Modules of constant Jordan type with one non-projective block”, Algebras and Representation Theory, 13 (2010), 315–318 | DOI | MR | Zbl

[4] D. J. Benson, “Modules of Constant Jordan Type with Small Non-Projective Part”, Algebras and Representation Theory, 2011

[5] S. Baland, “Modules of constant Jordan type with two non-projective blocks”, J. Algebra, 346 (2011), 343–350 | DOI | MR | Zbl

[6] J. F. Carlson, E. M. Friedlander, A. A. Suslin, “Modules for $\mathbb{Z}/p\times \mathbb{Z}/p$”, Comment. Math. Helv., 86 (2011), 609–657 | DOI | MR | Zbl

[7] Y. A. Drozd, “Tame and wild matrix problems”, Lecture Notes in Mathematics, 832, Springer-Verlag, Berlin–New York, 1980, 242–258 | DOI | MR

[8] V. M. Bondarenko, I. V. Lytvynchuk, “On some tame and wild matrix problems of constant rank”, Nauk. Visn. Uzhgorod. Univ., Ser. Mat. Inform., 23:1 (2012), 19–27 (in Russian)

[9] V. M. Bondarenko, “Linear operators on $S$-graded vector spaces”, Linear Algebra Appl., 365 (2003), 45–90 | DOI | MR | Zbl

[10] J. Soviet Math., 20:6 (1982), 2515–2528 | DOI | MR | MR | Zbl