Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2012_14_1_a10, author = {Yulia Zhykharyeva and Mykola Pratsiovytyi}, title = {Expansions of numbers in positive {L\"uroth} series and their applications to metric, probabilistic and fractal theories of numbers}, journal = {Algebra and discrete mathematics}, pages = {145--160}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2012}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a10/} }
TY - JOUR AU - Yulia Zhykharyeva AU - Mykola Pratsiovytyi TI - Expansions of numbers in positive L\"uroth series and their applications to metric, probabilistic and fractal theories of numbers JO - Algebra and discrete mathematics PY - 2012 SP - 145 EP - 160 VL - 14 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a10/ LA - en ID - ADM_2012_14_1_a10 ER -
%0 Journal Article %A Yulia Zhykharyeva %A Mykola Pratsiovytyi %T Expansions of numbers in positive L\"uroth series and their applications to metric, probabilistic and fractal theories of numbers %J Algebra and discrete mathematics %D 2012 %P 145-160 %V 14 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a10/ %G en %F ADM_2012_14_1_a10
Yulia Zhykharyeva; Mykola Pratsiovytyi. Expansions of numbers in positive L\"uroth series and their applications to metric, probabilistic and fractal theories of numbers. Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 145-160. https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a10/
[1] S. Albeverio, O. Baranovskyi, M. Pratsiovytyi, G. Torbin, “The Ostrogradsky series and related Cantor-like sets”, Acta Arith., 130:3 (2007), 215–230 | DOI | MR
[2] Ukrainian Math. J., 59:9 (2007), 1281–1299 | DOI | MR
[3] J. Barrionuevo, R. M. Burton, K. Dajani, C. Kraaikamp, “Ergodic properties of generalized Lüroth series”, Acta Arith., 74:4 (1996), 311–327 | MR | Zbl
[4] K. Dajani, C. Kraaikamp, “On approximation by Lüroth series”, J. Théor. Nombres Bordeaux, 8:2 (1996), 331–346 | DOI | MR | Zbl
[5] C. Ganatsiou, “On some properties of the Lüroth-type alternating series representations for real numbers”, Int. J. Math. Math. Sci., 28:6 (2001), 367–373 | DOI | MR | Zbl
[6] S. Kakutani, “On equivalence of infinite product measures”, Ann. of Math., 49 (1948), 214–224 | DOI | MR | Zbl
[7] S. Kalpazidou, A. Knopfmacher, J. Knopfmacher, “Metric properties of alternating Lüroth series”, Portugal. Math., 48:3 (1991), 319–325 | MR | Zbl
[8] J. Lüroth, “Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe”, Math. Ann., 21:3 (1883), 411–423 | DOI | MR
[9] I. M. Pratsiovyta, “Second Ostrogradsky series and distributions of their random incomplete sums”, Trans. Dragomanov Nat. Pedagogical Univ. Ser. 1, Physics Mathematics, 2006, no. 7, 174–189 (in Ukrainian)
[10] I. M. Pratsiovyta, M. V. Zadniprianyi, “Expansions of numbers in Sylvester series and their applications”, Trans. Dragomanov Nat. Pedagogical Univ. Ser. 1, Physics Mathematics, 2009, no. 10, 73–87 (in Ukrainian)
[11] M. V. Pratsiovytyi, Fractal approach to investigations of singular probability distributions, Dragomanov Nat. Pedagogical Univ. Publ., Kyiv, 1998 (in Ukrainian)
[12] M. V. Pratsiovytyi, B. I. Hetman, “Engel series and their applications”, Trans. Dragomanov Nat. Pedagogical Univ. Ser. 1, Physics Mathematics, 2006, no. 7, 105–116 (in Ukrainian)
[13] M. V. Pratsiovytyi, Yu. V. Khvorostina, “Set of incomplete sums of alternating Lüroth series and probability distributions on it”, Trans. Dragomanov Nat. Pedagogical Univ. Ser. 1, Physics Mathematics, 2009, no. 10, 14–27 (in Ukrainian)
[14] Theory Probab. Math. Statist., 1998, no. 57, 143–148 | MR
[15] W. Sierpiński, “O kilku algorytmach dla rozwijania liczb rzeczywistych na szeregi”, Sprawozdania z posiedzeń Towarzystwa Naukowego Warszawskiego, Wydział III, 4 (1911), 56–77
[16] J. J. Sylvester, “On a point in the theory of vulgar fractions”, Amer. J. Math., 3:4 (1880), 332–335 ; Postscript, ibid. 388–389 | DOI | MR | MR
[17] Yu. I. Zhykharyeva, M. V. Pratsiovytyi, “Representation of numbers by positive Lüroth series: elements of metric theory”, Trans. Dragomanov Nat. Pedagogical Univ. Ser. 1, Physics Mathematics, 2008, no. 9, 200–211 (in Ukrainian)
[18] Yu. I. Zhykharyeva, M. V. Pratsiovytyi, “Properties of distribution of the random variable with independent symbols of positive Lüroth series representation”, Trans. IAMM NAS Ukraine, 23 (2011), 71–83 (in Ukrainian)