On verbal subgroups in finite and profinite groups
Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let w be a multilinear commutator word. In the present paper we describe recent results that show that if G is a profinite group in which all w-values are contained in a union of finitely (or in some cases countably) many subgroups with a prescribed property, then the verbal subgroup w(G) has the same property as well. In particular, we show this in the case where the subgroups are periodic or of finite rank.
Mots-clés : Profinite groups, verbal subgroups, coverings, multilinear commutators.
@article{ADM_2012_14_1_a1,
     author = {Cristina Acciarri and Pavel Shumyatsky},
     title = {On verbal subgroups in finite and profinite groups},
     journal = {Algebra and discrete mathematics},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a1/}
}
TY  - JOUR
AU  - Cristina Acciarri
AU  - Pavel Shumyatsky
TI  - On verbal subgroups in finite and profinite groups
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 1
EP  - 13
VL  - 14
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a1/
LA  - en
ID  - ADM_2012_14_1_a1
ER  - 
%0 Journal Article
%A Cristina Acciarri
%A Pavel Shumyatsky
%T On verbal subgroups in finite and profinite groups
%J Algebra and discrete mathematics
%D 2012
%P 1-13
%V 14
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a1/
%G en
%F ADM_2012_14_1_a1
Cristina Acciarri; Pavel Shumyatsky. On verbal subgroups in finite and profinite groups. Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 1-13. https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a1/

[1] C. Acciarri, G. A. Fernández-Alcober, P. Shumyatsky, “A focal subgroup theorem for outer commutator words”, J. Group Theory, 15 (2012), 397–405 | DOI | MR | Zbl

[2] C. Acciarri, P. Shumyatsky, “On profinite groups in which commutators are covered by finitely many subgroups”, Math. Z. (to appear) | DOI

[3] S. Brazil, A. Krasilnikov, P. Shumyatsky, “Groups with bounded verbal conjugacy classes”, J. Group Theory, 9 (2006), 127–137 | DOI | MR | Zbl

[4] G. Cutolo, C. Nicotera, “Verbal sets and cyclic coverings”, J. Algebra, 324 (2010), 1616–1624 | DOI | MR | Zbl

[5] G. A. Fernández-Alcober, M. Morigi, “Outer commutator words are uniformly concise”, J. London Math. Soc., 82 (2010), 581–595 | DOI | MR | Zbl

[6] G. A. Fernández-Alcober, P. Shumyatsky, “On groups in which commutators are covered by finitely many cyclic subgroups”, J. Algebra, 319 (2008), 4844–4851 | DOI | MR | Zbl

[7] S. Franciosi, F. de Giovanni, L. A. Kurdachenko, “The Schur property and groups with uniform conjugacy classes”, J. Algebra, 174 (1995), 823–847 | DOI | MR | Zbl

[8] D. Gorenstein, Finite Groups, Chelsea Publishing Company, New York, 1980 | MR | Zbl

[9] P. Hall, G. Higman, “The $p$-length of a $p$-soluble group and reduction theorems for Burnside's problem”, Proc. London Math. Soc. (3), 6 (1956), 1–42 | DOI | MR | Zbl

[10] W. Herfort, “Compact torsion groups and finite exponent”, Arch. Math., 33 (1979), 404–410 | DOI | MR

[11] S. V. Ivanov, “P. Hall's conjecture on the finiteness of verbal subgroups”, Izv. Vyssh. Ucheb. Zaved., 325 (1989), 60–70

[12] J. L. Kelley, General Topology, van Norstand, Toronto–New York–London, 1955 | MR | Zbl

[13] E. I. Khukhro, “A comment on periodic compact groups”, Sib. Math. J., 30:3 (1989), 493–496 | DOI | MR | Zbl

[14] A. Lubotzky, A. Mann, “Powerful $p$-groups. I: finite groups”, J. Algebra, 105 (1987), 484–505 | DOI | MR | Zbl

[15] A. Mann, “The exponents of central factor and commutator groups”, J. Group Theory, 10 (2007), 435–436 | DOI | MR | Zbl

[16] Ju. I. Merzlyakov, “Verbal and marginal subgroups of linear groups”, Dokl. Akad. Nauk SSSR, 177 (1967), 1008–1011 | MR

[17] B. H. Neumann, “Groups covered by finitely many cosets”, Publ. Math. Debrecen, 3 (1954), 227–242 | MR | Zbl

[18] B. H. Neumann, “Groups covered by permutable subsets”, J. London Math. Soc., 29 (1954), 236–248 | DOI | MR | Zbl

[19] A. Yu. Ol'shanskii, Geometry of Defining Relations in Groups, Mathematics and its applications (Soviet Series), 70, Kluwer Academic Publishers, Dordrecht, 1991 | DOI | MR

[20] L. Ribes, P. Zalesskii, Profinite Groups, 2nd Edition, Springer Verlag, Berlin–New York, 2010 | MR | Zbl

[21] D. J. S. Robinson, A Course in the Theory of Groups, 2nd Edition, Springer-Verlag, 1995

[22] J. R. Rogério, P. Shumyatsky, “A finiteness condition for verbal subgroups”, J. Group Theory, 10 (2007), 811–815 | DOI | MR | Zbl

[23] D. Segal, Words: notes on verbal width in groups, LMS Lecture Notes, 361, Cambridge University Press, Cambridge, 2009 | Zbl

[24] P. Shumyatsky, “Verbal subgroups in residually finite groups”, Quart. J. Math., 51 (2000), 523–528 | DOI | Zbl

[25] P. Shumyatsky, “On the exponent of a verbal subgroup in a finite group”, J. Aust. Math. Soc. (to appear)

[26] R. F. Turner-Smith, “Finiteness conditions for verbal subgroups”, J. London Math. Soc., 41 (1966), 166–176 | DOI | Zbl

[27] J. Wilson, “On outer-commutator words”, Can. J. Math., 26 (1974), 608–620 | DOI | Zbl

[28] J. S. Wilson, “On the structure of compact torsion groups”, Monatsh. Math., 96 (1983), 57–66 | DOI | Zbl

[29] J. S. Wilson, Profinite Groups, Clarendon Press, Oxford, 1998

[30] E. Zelmanov, “On periodic compact groups”, Israel J. Math., 77 (1992), 83–95 | DOI | Zbl

[31] E. Zelmanov, “Lie methods in the theory of nilpotent groups”, Groups'93 Galaway/St. Andrews, Cambridge University Press, Cambridge, 1995, 567–585 | Zbl

[32] E. Zelmanov, “Nil rings and periodic groups”, The Korean Mathematical Society Lecture Notes in Mathematics, Seoul, 1992