Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2012_14_1_a1, author = {Cristina Acciarri and Pavel Shumyatsky}, title = {On verbal subgroups in finite and profinite groups}, journal = {Algebra and discrete mathematics}, pages = {1--13}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2012}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a1/} }
Cristina Acciarri; Pavel Shumyatsky. On verbal subgroups in finite and profinite groups. Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 1-13. https://geodesic-test.mathdoc.fr/item/ADM_2012_14_1_a1/
[1] C. Acciarri, G. A. Fernández-Alcober, P. Shumyatsky, “A focal subgroup theorem for outer commutator words”, J. Group Theory, 15 (2012), 397–405 | DOI | MR | Zbl
[2] C. Acciarri, P. Shumyatsky, “On profinite groups in which commutators are covered by finitely many subgroups”, Math. Z. (to appear) | DOI
[3] S. Brazil, A. Krasilnikov, P. Shumyatsky, “Groups with bounded verbal conjugacy classes”, J. Group Theory, 9 (2006), 127–137 | DOI | MR | Zbl
[4] G. Cutolo, C. Nicotera, “Verbal sets and cyclic coverings”, J. Algebra, 324 (2010), 1616–1624 | DOI | MR | Zbl
[5] G. A. Fernández-Alcober, M. Morigi, “Outer commutator words are uniformly concise”, J. London Math. Soc., 82 (2010), 581–595 | DOI | MR | Zbl
[6] G. A. Fernández-Alcober, P. Shumyatsky, “On groups in which commutators are covered by finitely many cyclic subgroups”, J. Algebra, 319 (2008), 4844–4851 | DOI | MR | Zbl
[7] S. Franciosi, F. de Giovanni, L. A. Kurdachenko, “The Schur property and groups with uniform conjugacy classes”, J. Algebra, 174 (1995), 823–847 | DOI | MR | Zbl
[8] D. Gorenstein, Finite Groups, Chelsea Publishing Company, New York, 1980 | MR | Zbl
[9] P. Hall, G. Higman, “The $p$-length of a $p$-soluble group and reduction theorems for Burnside's problem”, Proc. London Math. Soc. (3), 6 (1956), 1–42 | DOI | MR | Zbl
[10] W. Herfort, “Compact torsion groups and finite exponent”, Arch. Math., 33 (1979), 404–410 | DOI | MR
[11] S. V. Ivanov, “P. Hall's conjecture on the finiteness of verbal subgroups”, Izv. Vyssh. Ucheb. Zaved., 325 (1989), 60–70
[12] J. L. Kelley, General Topology, van Norstand, Toronto–New York–London, 1955 | MR | Zbl
[13] E. I. Khukhro, “A comment on periodic compact groups”, Sib. Math. J., 30:3 (1989), 493–496 | DOI | MR | Zbl
[14] A. Lubotzky, A. Mann, “Powerful $p$-groups. I: finite groups”, J. Algebra, 105 (1987), 484–505 | DOI | MR | Zbl
[15] A. Mann, “The exponents of central factor and commutator groups”, J. Group Theory, 10 (2007), 435–436 | DOI | MR | Zbl
[16] Ju. I. Merzlyakov, “Verbal and marginal subgroups of linear groups”, Dokl. Akad. Nauk SSSR, 177 (1967), 1008–1011 | MR
[17] B. H. Neumann, “Groups covered by finitely many cosets”, Publ. Math. Debrecen, 3 (1954), 227–242 | MR | Zbl
[18] B. H. Neumann, “Groups covered by permutable subsets”, J. London Math. Soc., 29 (1954), 236–248 | DOI | MR | Zbl
[19] A. Yu. Ol'shanskii, Geometry of Defining Relations in Groups, Mathematics and its applications (Soviet Series), 70, Kluwer Academic Publishers, Dordrecht, 1991 | DOI | MR
[20] L. Ribes, P. Zalesskii, Profinite Groups, 2nd Edition, Springer Verlag, Berlin–New York, 2010 | MR | Zbl
[21] D. J. S. Robinson, A Course in the Theory of Groups, 2nd Edition, Springer-Verlag, 1995
[22] J. R. Rogério, P. Shumyatsky, “A finiteness condition for verbal subgroups”, J. Group Theory, 10 (2007), 811–815 | DOI | MR | Zbl
[23] D. Segal, Words: notes on verbal width in groups, LMS Lecture Notes, 361, Cambridge University Press, Cambridge, 2009 | Zbl
[24] P. Shumyatsky, “Verbal subgroups in residually finite groups”, Quart. J. Math., 51 (2000), 523–528 | DOI | Zbl
[25] P. Shumyatsky, “On the exponent of a verbal subgroup in a finite group”, J. Aust. Math. Soc. (to appear)
[26] R. F. Turner-Smith, “Finiteness conditions for verbal subgroups”, J. London Math. Soc., 41 (1966), 166–176 | DOI | Zbl
[27] J. Wilson, “On outer-commutator words”, Can. J. Math., 26 (1974), 608–620 | DOI | Zbl
[28] J. S. Wilson, “On the structure of compact torsion groups”, Monatsh. Math., 96 (1983), 57–66 | DOI | Zbl
[29] J. S. Wilson, Profinite Groups, Clarendon Press, Oxford, 1998
[30] E. Zelmanov, “On periodic compact groups”, Israel J. Math., 77 (1992), 83–95 | DOI | Zbl
[31] E. Zelmanov, “Lie methods in the theory of nilpotent groups”, Groups'93 Galaway/St. Andrews, Cambridge University Press, Cambridge, 1995, 567–585 | Zbl
[32] E. Zelmanov, “Nil rings and periodic groups”, The Korean Mathematical Society Lecture Notes in Mathematics, Seoul, 1992