Partitions of groups into sparse subsets
Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 107-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset A of a group G is called sparse if, for every infinite subset X of G, there exists a finite subset FX, such that xFxA is finite. We denote by η(G) the minimal cardinal such that G can be partitioned in η(G) sparse subsets. If |G|>(κ+)0 then η(G)>κ, if |G|κ+ then η(G)κ. We show also that cov(A)cf|G| for each sparse subset A of an infinite group G, where cov(A)=min{|X|:G=XA}.
Keywords: sparse subset of a group.
Mots-clés : partition of a group
@article{ADM_2012_13_1_a8,
     author = {Igor Protasov},
     title = {Partitions of groups into sparse subsets},
     journal = {Algebra and discrete mathematics},
     pages = {107--110},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a8/}
}
TY  - JOUR
AU  - Igor Protasov
TI  - Partitions of groups into sparse subsets
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 107
EP  - 110
VL  - 13
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a8/
LA  - en
ID  - ADM_2012_13_1_a8
ER  - 
%0 Journal Article
%A Igor Protasov
%T Partitions of groups into sparse subsets
%J Algebra and discrete mathematics
%D 2012
%P 107-110
%V 13
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a8/
%G en
%F ADM_2012_13_1_a8
Igor Protasov. Partitions of groups into sparse subsets. Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 107-110. https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a8/

[1] T. Banakh, I. Protasov, “Partition of groups and matroids into independent subsets”, Algebra and Discrete Math., 10 (2010), 1–7 | MR | Zbl

[2] M. Filali, Ie. Lutsenko, I. V. Protasov, “Boolean group ideals and the ideal structure of $\beta G$”, Math. Stud., 31 (2009), 19–28 | MR | Zbl

[3] Ie. Lutsenko, I. V. Protasov, “Sparse, thin and other subsets of groups”, Intern. J. Algebra Computation, 19 (2009), 491–510 | DOI | MR | Zbl

[4] I. V. Protasov, “Partition of groups into large subsets”, Math. Notes, 73 (2003), 271–281 | DOI | MR

[5] I. V. Protasov, “Small systems of generators of groups”, Math. Notes, 76 (2004), 420–426 | DOI | MR | Zbl

[6] I. Protasov, “Partition of groups into thin subsets”, Algebra and Discrete Math., 11 (2011), 88–92 | MR

[7] I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., 12, VNTL, Lviv, 2007 | MR | Zbl