On hypercentral fyzzy groups
Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 92-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

In an arbitrary fuzzy group we construct the upper central series and consider some its properties. In particular, the characterization of nilpotent fuzzy group has been obtained.
Mots-clés : Fuzzy group; fuzzy subgroup; upper central series, lower central series, nilpotent fuzzy group; support subgroup; characteristic function.
@article{ADM_2012_13_1_a7,
     author = {L. A. Kurdachenko and K. O. Grin and N. A. Turbay},
     title = {On  hypercentral fyzzy groups},
     journal = {Algebra and discrete mathematics},
     pages = {92--106},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a7/}
}
TY  - JOUR
AU  - L. A. Kurdachenko
AU  - K. O. Grin
AU  - N. A. Turbay
TI  - On  hypercentral fyzzy groups
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 92
EP  - 106
VL  - 13
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a7/
LA  - en
ID  - ADM_2012_13_1_a7
ER  - 
%0 Journal Article
%A L. A. Kurdachenko
%A K. O. Grin
%A N. A. Turbay
%T On  hypercentral fyzzy groups
%J Algebra and discrete mathematics
%D 2012
%P 92-106
%V 13
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a7/
%G en
%F ADM_2012_13_1_a7
L. A. Kurdachenko; K. O. Grin; N. A. Turbay. On  hypercentral fyzzy groups. Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 92-106. https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a7/

[1] J. N. Mordeson, K. R. Bhutani, A. Rosenfeld, Fuzzy Group Theory, Springer, Berlin, 2005 | Zbl

[2] K. C. Gupta, B. K. Sarma, “Nilpotent fuzzy groups”, Fuzzy Sets and Systems, 101 (1999), 167–176 | DOI | MR | Zbl

[3] J. G. Kim, “Commutative fuzzy sets and nilpotent fuzzy groups”, Information Sciences, 83 (1995), 161–174 | DOI | MR | Zbl

[4] M. Asaad, S. Abou-Zaid, “Fuzzy subgroups of nilpotent groups”, Fuzzy Sets and Systems, 24 (1993), 321–323 | DOI | MR