Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 52-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Cayley graph X=Cay(G,S) is called normal for G if the right regular representation R(G) of G is normal in the full automorphism group Aut(X) of X. In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group G are normal when (|G|,2)=(|G|,3)=1, and X is not isomorphic to either Cay(G,S), where |G|=5n, and |Aut(X)|=2m.3.5n, where m{2,3} and n3, or Cay(G,S) where |G|=5qn (q is prime) and |Aut(X)|=2m.3.5.qn, where q7, m{2,3} and n1.
Mots-clés : Cayley graph, normal Cayley graph, minimal non-abelian group.
@article{ADM_2012_13_1_a5,
     author = {Mohsen Ghasemi},
     title = {Automorphism groups of tetravalent {Cayley} graphs on minimal non-abelian groups},
     journal = {Algebra and discrete mathematics},
     pages = {52--58},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a5/}
}
TY  - JOUR
AU  - Mohsen Ghasemi
TI  - Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 52
EP  - 58
VL  - 13
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a5/
LA  - en
ID  - ADM_2012_13_1_a5
ER  - 
%0 Journal Article
%A Mohsen Ghasemi
%T Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
%J Algebra and discrete mathematics
%D 2012
%P 52-58
%V 13
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a5/
%G en
%F ADM_2012_13_1_a5
Mohsen Ghasemi. Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups. Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 52-58. https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a5/

[1] Y. G. Baik, Y. Q. Feng, H. S. Sim, “The normality of Cayley graphs of finite Abelian groups with valency 5”, Systems Sci. Math. Sci., 13 (2000), 425–431 | MR | Zbl

[2] Y. G. Baik, Y. Q. Feng, H. S. Sim, M. Y. Xu, “On the normality of Cayley graphs of Abelian groups”, Algebra Colloq., 5 (1998), 297–304 | MR | Zbl

[3] N. Bigss, Algebraic Graph Theory, second ed., Cambridge University Press, Cambridge, 1993 | MR

[4] J. D. Dixon, B. Mortimer, Permutation Groups, Springer, New York, 1996 | MR

[5] X. G. Fang, C. H. Li, J. Wang, M. Y. Xu, “On cubic Cayley graphs of finite simple groups”, Discrete Math., 244 (2002), 67–75 | DOI | MR | Zbl

[6] Y. Q. Feng, J. H. Kwak, R. J. Wang, “Automorphism groups of $4$-valent connected Cayley graphs of $p$-groups”, Chinese Ann. Math. B, 22 (2001), 281–286 | DOI | MR | Zbl

[7] Y. Q. Feng, M. Y. Xu, “Automorphism groups of tetravalent Cayley graphs on regular $p$-groups”, Discrete Math., 305 (2005), 345–360 | DOI | MR

[8] C. D. Godsil, “On the full automorphism group of a graph”, Combinatorica, 1 (1981), 243–256 | DOI | MR | Zbl

[9] C. D. Godsil, “The automorphism group of some cubic Cayley graphs”, Europ. J. Combin., 4 (1983), 25–32 | MR | Zbl

[10] C. H. Li, “The solution of a problem of Godsil on cubic Cayley graphs”, J. Combin. Theory Ser. B, 72 (1998), 140–142 | DOI | MR | Zbl

[11] C. H. Li, H. S. Sim, “The graphical regular representations of metacyclic $p$-groups”, Europ. J. Combin., 21 (2000), 917–925 | DOI | MR | Zbl

[12] G. A. Miller, H. C. Moreno, “Non-abelian groups in which every subgroup is abelian”, Trans. Amer. Math. Soc., 4 (1903), 398–404 | DOI | MR | Zbl

[13] C. E. Preager, “Finite normal edge-transitive Cayley graphs”, Bull. Austral. Math. Soc., 60 (1999), 207–220 | DOI | MR

[14] M. Y. Xu, “Automorphism groups and isomorphisms of Cayley digraphs”, Discrete Math., 182 (1998), 309–319 | DOI | MR | Zbl