Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2012_13_1_a5, author = {Mohsen Ghasemi}, title = {Automorphism groups of tetravalent {Cayley} graphs on minimal non-abelian groups}, journal = {Algebra and discrete mathematics}, pages = {52--58}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2012}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a5/} }
TY - JOUR AU - Mohsen Ghasemi TI - Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups JO - Algebra and discrete mathematics PY - 2012 SP - 52 EP - 58 VL - 13 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a5/ LA - en ID - ADM_2012_13_1_a5 ER -
Mohsen Ghasemi. Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups. Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 52-58. https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a5/
[1] Y. G. Baik, Y. Q. Feng, H. S. Sim, “The normality of Cayley graphs of finite Abelian groups with valency 5”, Systems Sci. Math. Sci., 13 (2000), 425–431 | MR | Zbl
[2] Y. G. Baik, Y. Q. Feng, H. S. Sim, M. Y. Xu, “On the normality of Cayley graphs of Abelian groups”, Algebra Colloq., 5 (1998), 297–304 | MR | Zbl
[3] N. Bigss, Algebraic Graph Theory, second ed., Cambridge University Press, Cambridge, 1993 | MR
[4] J. D. Dixon, B. Mortimer, Permutation Groups, Springer, New York, 1996 | MR
[5] X. G. Fang, C. H. Li, J. Wang, M. Y. Xu, “On cubic Cayley graphs of finite simple groups”, Discrete Math., 244 (2002), 67–75 | DOI | MR | Zbl
[6] Y. Q. Feng, J. H. Kwak, R. J. Wang, “Automorphism groups of $4$-valent connected Cayley graphs of $p$-groups”, Chinese Ann. Math. B, 22 (2001), 281–286 | DOI | MR | Zbl
[7] Y. Q. Feng, M. Y. Xu, “Automorphism groups of tetravalent Cayley graphs on regular $p$-groups”, Discrete Math., 305 (2005), 345–360 | DOI | MR
[8] C. D. Godsil, “On the full automorphism group of a graph”, Combinatorica, 1 (1981), 243–256 | DOI | MR | Zbl
[9] C. D. Godsil, “The automorphism group of some cubic Cayley graphs”, Europ. J. Combin., 4 (1983), 25–32 | MR | Zbl
[10] C. H. Li, “The solution of a problem of Godsil on cubic Cayley graphs”, J. Combin. Theory Ser. B, 72 (1998), 140–142 | DOI | MR | Zbl
[11] C. H. Li, H. S. Sim, “The graphical regular representations of metacyclic $p$-groups”, Europ. J. Combin., 21 (2000), 917–925 | DOI | MR | Zbl
[12] G. A. Miller, H. C. Moreno, “Non-abelian groups in which every subgroup is abelian”, Trans. Amer. Math. Soc., 4 (1903), 398–404 | DOI | MR | Zbl
[13] C. E. Preager, “Finite normal edge-transitive Cayley graphs”, Bull. Austral. Math. Soc., 60 (1999), 207–220 | DOI | MR
[14] M. Y. Xu, “Automorphism groups and isomorphisms of Cayley digraphs”, Discrete Math., 182 (1998), 309–319 | DOI | MR | Zbl