Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2012_13_1_a3, author = {Taras Banakh and Volodymyr Gavrylkiv}, title = {Algebra in superextensions of semilattices}, journal = {Algebra and discrete mathematics}, pages = {26--42}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2012}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a3/} }
Taras Banakh; Volodymyr Gavrylkiv. Algebra in superextensions of semilattices. Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 26-42. https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a3/
[1] T. Banakh, V. Gavrylkiv, O. Nykyforchyn, “Algebra in superextensions of groups. I: Zeros and commutativity”, Algebra Discrete Math., 2008, no. 3, 1–29 | MR | Zbl
[2] T. Banakh, V. Gavrylkiv, “Algebra in superextension of groups. II: Cancelativity and centers”, Algebra Discrete Math., 2008, no. 4, 1–14 | MR | Zbl
[3] T. Banakh, V. Gavrylkiv, “Algebra in superextension of groups: the minimal ideal of $\lambda(G)$”, Mat. Stud., 31 (2009), 142–148 | MR | Zbl
[4] T. Banakh, V. Gavrylkiv, “Algebra in the superextensions of twinic groups”, Dissert. Math., 473 (2010), 74 pp. | MR | Zbl
[5] T. Banakh, V. Gavrylkiv, “Algebra in the superextensions of inverse semigroups”, Algebra Discr. Math. (to appear)
[6] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, v. I, Mathematical Surveys, 7, AMS, Providence, RI, 1961 | MR | Zbl
[7] V. Gavrylkiv, “The spaces of inclusion hyperspaces over noncompact spaces”, Mat. Stud., 28:1 (2007), 92–110 | MR | Zbl
[8] V. Gavrylkiv, “Right-topological semigroup operations on inclusion hyperspaces”, Mat. Stud., 29:1 (2008), 18–34 | MR | Zbl
[9] N. Hindman, D. Strauss, Algebra in the Stone–Čech compactification, de Gruyter, Berlin–New York, 1998 | MR | Zbl
[10] J. van Mill, Supercompactness and Wallman spaces, Math. Centre Tracts, 85, Math. Centrum., Amsterdam, 1977 | MR
[11] I. Protasov, Combinatorics of Numbers, VNTL, Lviv, 1997 | MR
[12] C. Schubert, G. Seal, “Extensions in the theory of Lax algebra”, Theory and Appl. of Categories, 21:7 (2008), 118–151 | MR | Zbl
[13] A. Teleiko, M. Zarichnyi, Categorical Topology of Compact Hausdoff Spaces, VNTL, Lviv, 1999 | MR | Zbl
[14] A. Verbeek, Superextensions of topological spaces, MC Tract, 41, Amsterdam, 1972 | MR | Zbl