Algebra in superextensions of semilattices
Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 26-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a semilattice X we study the algebraic properties of the semigroup υ(X) of upfamilies on X. The semigroup υ(X) contains the Stone–Čech extension β(X), the superextension λ(X), and the space of filters φ(X) on X as closed subsemigroups. We prove that υ(X) is a semilattice iff λ(X) is a semilattice iff φ(X) is a semilattice iff the semilattice X is finite and linearly ordered. We prove that the semigroup β(X) is a band if and only if X has no infinite antichains, and the semigroup λ(X) is commutative if and only if X is a bush with finite branches.
Mots-clés : semilattice, band, commutative semigroup, the space of upfamilies, the space of filters, the space of maximal linked systems, superextension.
@article{ADM_2012_13_1_a3,
     author = {Taras Banakh and Volodymyr Gavrylkiv},
     title = {Algebra in superextensions of semilattices},
     journal = {Algebra and discrete mathematics},
     pages = {26--42},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a3/}
}
TY  - JOUR
AU  - Taras Banakh
AU  - Volodymyr Gavrylkiv
TI  - Algebra in superextensions of semilattices
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 26
EP  - 42
VL  - 13
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a3/
LA  - en
ID  - ADM_2012_13_1_a3
ER  - 
%0 Journal Article
%A Taras Banakh
%A Volodymyr Gavrylkiv
%T Algebra in superextensions of semilattices
%J Algebra and discrete mathematics
%D 2012
%P 26-42
%V 13
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a3/
%G en
%F ADM_2012_13_1_a3
Taras Banakh; Volodymyr Gavrylkiv. Algebra in superextensions of semilattices. Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 26-42. https://geodesic-test.mathdoc.fr/item/ADM_2012_13_1_a3/

[1] T. Banakh, V. Gavrylkiv, O. Nykyforchyn, “Algebra in superextensions of groups. I: Zeros and commutativity”, Algebra Discrete Math., 2008, no. 3, 1–29 | MR | Zbl

[2] T. Banakh, V. Gavrylkiv, “Algebra in superextension of groups. II: Cancelativity and centers”, Algebra Discrete Math., 2008, no. 4, 1–14 | MR | Zbl

[3] T. Banakh, V. Gavrylkiv, “Algebra in superextension of groups: the minimal ideal of $\lambda(G)$”, Mat. Stud., 31 (2009), 142–148 | MR | Zbl

[4] T. Banakh, V. Gavrylkiv, “Algebra in the superextensions of twinic groups”, Dissert. Math., 473 (2010), 74 pp. | MR | Zbl

[5] T. Banakh, V. Gavrylkiv, “Algebra in the superextensions of inverse semigroups”, Algebra Discr. Math. (to appear)

[6] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, v. I, Mathematical Surveys, 7, AMS, Providence, RI, 1961 | MR | Zbl

[7] V. Gavrylkiv, “The spaces of inclusion hyperspaces over noncompact spaces”, Mat. Stud., 28:1 (2007), 92–110 | MR | Zbl

[8] V. Gavrylkiv, “Right-topological semigroup operations on inclusion hyperspaces”, Mat. Stud., 29:1 (2008), 18–34 | MR | Zbl

[9] N. Hindman, D. Strauss, Algebra in the Stone–Čech compactification, de Gruyter, Berlin–New York, 1998 | MR | Zbl

[10] J. van Mill, Supercompactness and Wallman spaces, Math. Centre Tracts, 85, Math. Centrum., Amsterdam, 1977 | MR

[11] I. Protasov, Combinatorics of Numbers, VNTL, Lviv, 1997 | MR

[12] C. Schubert, G. Seal, “Extensions in the theory of Lax algebra”, Theory and Appl. of Categories, 21:7 (2008), 118–151 | MR | Zbl

[13] A. Teleiko, M. Zarichnyi, Categorical Topology of Compact Hausdoff Spaces, VNTL, Lviv, 1999 | MR | Zbl

[14] A. Verbeek, Superextensions of topological spaces, MC Tract, 41, Amsterdam, 1972 | MR | Zbl