On filters and upper sets in CI-algebras
Algebra and discrete mathematics, Tome 11 (2011) no. 1, pp. 109-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

CI-algebras are a generalization of BE-algebras and dual BCK/BCI/BCH-algebras. In this paper filters of CI-algebras are considered. Given a subset of a CI-algebra, the least filter containing it is constructed. An equivalent condition of the filters using the notion of upper sets is provided.
Mots-clés : CI-algebra, filter, upper set.
@article{ADM_2011_11_1_a6,
     author = {Bo\.zena Piekart and Andrzej Walendziak},
     title = {On filters and upper sets in {CI-algebras}},
     journal = {Algebra and discrete mathematics},
     pages = {109--115},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2011},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2011_11_1_a6/}
}
TY  - JOUR
AU  - Bożena Piekart
AU  - Andrzej Walendziak
TI  - On filters and upper sets in CI-algebras
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 109
EP  - 115
VL  - 11
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2011_11_1_a6/
LA  - en
ID  - ADM_2011_11_1_a6
ER  - 
%0 Journal Article
%A Bożena Piekart
%A Andrzej Walendziak
%T On filters and upper sets in CI-algebras
%J Algebra and discrete mathematics
%D 2011
%P 109-115
%V 11
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2011_11_1_a6/
%G en
%F ADM_2011_11_1_a6
Bożena Piekart; Andrzej Walendziak. On filters and upper sets in CI-algebras. Algebra and discrete mathematics, Tome 11 (2011) no. 1, pp. 109-115. https://geodesic-test.mathdoc.fr/item/ADM_2011_11_1_a6/

[1] Ahn S. S., So K. S., “On ideals and upper sets in BE-algebras”, Sci. Math. Japonicae, 2010, 351–357

[2] Hu Q. P., Li X., “On BCH-algebras”, Math. Seminar Notes, 11 (1983), 313–320 | MR | Zbl

[3] Imai Y., Iséki K., “On axiom systems of propositional calculi XIV”, Proc. Japan Academy, 42 (1966), 19–22 | DOI | MR | Zbl

[4] Iséki K., “An algebra related with a propositional calculus”, Proc. Japan Acad., 42 (1966), 26–29 | DOI | MR | Zbl

[5] Jun Y. B., Roh E. H., Kim H. S., “On BH-algebras”, Sci. Mathematicae, 1 (1998), 347–354 | MR | Zbl

[6] Kim H. S., Kim Y. H., “On BE-algebras”, Sci. Math. Japonicae, 66 (2007), 113–116 | MR | Zbl

[7] Kim H .S., Lee K. J., “Extended upper sets in BE-algebras”, Bull Malays. Math. Sci. Soc (to appear)

[8] Komori Y., “The variety generated by BCC-algebras is finitelly based”, Reports Fac. Sci. Shizuoka Univ., 1983 (17), 13–16 | MR | Zbl

[9] Meng B. L., “CI-algebras”, Sci. Math. Japonicae, 2009, 695–701 | MR

[10] Meng B. L., “On filters in BE-algebras”, Sci. Math. Japonicae, 2010, 105–111 | MR

[11] Meng B. L., “Closed filters in CI-algebras”, Sci. Math. Japonicae, 2010, 265–270 | MR

[12] Negger J., Kim H. S., “On d-algebras”, Math. Slovaca, 40 (1999), 19–26 | MR

[13] Song S. Z., Jun Y. B., Lee K. J., “Fuzzy ideals in BE-algebras”, Bull. Malays. Math. Sci. Soc., 33 (2010), 147–153 | MR | Zbl