Projectivity and flatness over the graded ring of semi-coinvariants
Algebra and discrete mathematics, Tome 10 (2010) no. 1, pp. 42-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let k be a field, C a bialgebra with bijective antipode, A a right C-comodule algebra, G any subgroup of the monoid of grouplike elements of C. We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of semi-coinvariants of A. When A and C are commutative and G is any subgroup of the monoid of grouplike elements of the coring AC, we prove similar results for the graded ring of conormalizing elements of A.
@article{ADM_2010_10_1_a4,
     author = {T. Gu\'ed\'enon},
     title = {Projectivity and flatness over the graded ring of semi-coinvariants},
     journal = {Algebra and discrete mathematics},
     pages = {42--56},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2010_10_1_a4/}
}
TY  - JOUR
AU  - T. Guédénon
TI  - Projectivity and flatness over the graded ring of semi-coinvariants
JO  - Algebra and discrete mathematics
PY  - 2010
SP  - 42
EP  - 56
VL  - 10
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2010_10_1_a4/
LA  - en
ID  - ADM_2010_10_1_a4
ER  - 
%0 Journal Article
%A T. Guédénon
%T Projectivity and flatness over the graded ring of semi-coinvariants
%J Algebra and discrete mathematics
%D 2010
%P 42-56
%V 10
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2010_10_1_a4/
%G en
%F ADM_2010_10_1_a4
T. Guédénon. Projectivity and flatness over the graded ring of semi-coinvariants. Algebra and discrete mathematics, Tome 10 (2010) no. 1, pp. 42-56. https://geodesic-test.mathdoc.fr/item/ADM_2010_10_1_a4/