A note on semidirect products and nonabelian tensor products of groups
Algebra and discrete mathematics, no. 3 (2009), pp. 77-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let G and H be groups which act compatibly on one another. In [2] and [8] it is considered a group construction η(G,H) which is related to the nonabelian tensor product GH. In this note we study embedding questions of certain semidirect products AH into η(A,H), for finite abelian H-groups A. As a consequence of our results we obtain that complete Frobenius groups and affine groups over finite fields are embedded into η(A,H) for convenient groups A and H. Further, on considering finite metabelian groups G in which the derived subgroup has order coprime with its index we establish the order of the nonabelian tensor square of G.
@article{ADM_2009_3_a7,
     author = {Irene N. Nakaoka and Nora{\'\i} R. Rocco},
     title = {A note on semidirect products and nonabelian tensor products of groups},
     journal = {Algebra and discrete mathematics},
     pages = {77--84},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2009_3_a7/}
}
TY  - JOUR
AU  - Irene N. Nakaoka
AU  - Noraí R. Rocco
TI  - A note on semidirect products and nonabelian tensor products of groups
JO  - Algebra and discrete mathematics
PY  - 2009
SP  - 77
EP  - 84
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2009_3_a7/
LA  - en
ID  - ADM_2009_3_a7
ER  - 
%0 Journal Article
%A Irene N. Nakaoka
%A Noraí R. Rocco
%T A note on semidirect products and nonabelian tensor products of groups
%J Algebra and discrete mathematics
%D 2009
%P 77-84
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2009_3_a7/
%G en
%F ADM_2009_3_a7
Irene N. Nakaoka; Noraí R. Rocco. A note on semidirect products and nonabelian tensor products of groups. Algebra and discrete mathematics, no. 3 (2009), pp. 77-84. https://geodesic-test.mathdoc.fr/item/ADM_2009_3_a7/