Semisimple group codes and dihedral codes
Algebra and discrete mathematics, no. 3 (2009), pp. 28-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider codes that are given as two-sided ideals in a semisimple finite group algebra FqG defined by idempotents constructed from subgroups of G in a natural way and compute their dimensions and weights. We give a criterion to decide when these ideals are all the minimal two-sided ideals of FqG in the case when G is a dihedral group and extend these results also to a family of quaternion group codes. In the final section, we give a method of decoding; i.e., of finding and correcting eventual transmission errors.
Keywords: group algebra, idempotent, dihedral group
Mots-clés : group code, minimal code, quaternion group.
@article{ADM_2009_3_a3,
     author = {Flaviana S. Dutra and Raul A. Ferraz and C. Polcino Milies},
     title = {Semisimple group codes and dihedral codes},
     journal = {Algebra and discrete mathematics},
     pages = {28--48},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2009_3_a3/}
}
TY  - JOUR
AU  - Flaviana S. Dutra
AU  - Raul A. Ferraz
AU  - C. Polcino Milies
TI  - Semisimple group codes and dihedral codes
JO  - Algebra and discrete mathematics
PY  - 2009
SP  - 28
EP  - 48
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2009_3_a3/
LA  - en
ID  - ADM_2009_3_a3
ER  - 
%0 Journal Article
%A Flaviana S. Dutra
%A Raul A. Ferraz
%A C. Polcino Milies
%T Semisimple group codes and dihedral codes
%J Algebra and discrete mathematics
%D 2009
%P 28-48
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2009_3_a3/
%G en
%F ADM_2009_3_a3
Flaviana S. Dutra; Raul A. Ferraz; C. Polcino Milies. Semisimple group codes and dihedral codes. Algebra and discrete mathematics, no. 3 (2009), pp. 28-48. https://geodesic-test.mathdoc.fr/item/ADM_2009_3_a3/