Algebra in superextensions of groups, I: zeros and commutativity
Algebra and discrete mathematics, no. 3 (2008), pp. 1-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation $$ \mathcal A\circ\mathcal B=\{C\subset X:\{x\in X:x^{-1}C\in\mathcal B\}\in\mathcal A\} $$ that extends the group operation of X. We characterize right zeros of λ(X) as invariant maximal linked systems on X and prove that λ(X) has a right zero if and only if each element of X has odd order. On the other hand, the semigroup λ(X) contains a left zero if and only if it contains a zero if and only if X has odd order |X|5. The semigroup λ(X) is commutative if and only if |X|4. We finish the paper with a complete description of the algebraic structure of the semigroups λ(X) for all groups X of cardinality |X|5.
Mots-clés : Superextension, right-topological semigroup.
@article{ADM_2008_3_a0,
     author = {T. Banakh and V. Gavrylkiv and O. Nykyforchyn},
     title = {Algebra in superextensions of groups, {I:} zeros and commutativity},
     journal = {Algebra and discrete mathematics},
     pages = {1--29},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2008_3_a0/}
}
TY  - JOUR
AU  - T. Banakh
AU  - V. Gavrylkiv
AU  - O. Nykyforchyn
TI  - Algebra in superextensions of groups, I: zeros and commutativity
JO  - Algebra and discrete mathematics
PY  - 2008
SP  - 1
EP  - 29
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2008_3_a0/
LA  - en
ID  - ADM_2008_3_a0
ER  - 
%0 Journal Article
%A T. Banakh
%A V. Gavrylkiv
%A O. Nykyforchyn
%T Algebra in superextensions of groups, I: zeros and commutativity
%J Algebra and discrete mathematics
%D 2008
%P 1-29
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2008_3_a0/
%G en
%F ADM_2008_3_a0
T. Banakh; V. Gavrylkiv; O. Nykyforchyn. Algebra in superextensions of groups, I: zeros and commutativity. Algebra and discrete mathematics, no. 3 (2008), pp. 1-29. https://geodesic-test.mathdoc.fr/item/ADM_2008_3_a0/