Arithmetic properties of exceptional lattice paths
Algebra and discrete mathematics, no. 3 (2006), pp. 101-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a fixed real number ρ>0, let L be an affine line of slope ρ1 in R2. We show that the closest approximation of L by a path P in Z2 is unique, except in one case, up to integral translation. We study this exceptional case. For irrational ρ, the projection of P to L yields two quasicrystallographic tilings in the sense of Lunnon and Pleasants [5]. If ρ satisfies an equation x2=mx+1 with mZ, both quasicrystals are mapped to each other by a substitution rule. For rational ρ, we characterize the periodic parts of P by geometric and arithmetic properties, and exhibit a relationship to the hereditary algebras Hρ(K) over a field K introduced in a recent proof of a conjecture of Roiter.
Mots-clés : Lattice path, uniform enumeration, quasicrystal.
@article{ADM_2006_3_a8,
     author = {Wolfgang Rump},
     title = {Arithmetic properties of exceptional lattice paths},
     journal = {Algebra and discrete mathematics},
     pages = {101--118},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2006_3_a8/}
}
TY  - JOUR
AU  - Wolfgang Rump
TI  - Arithmetic properties of exceptional lattice paths
JO  - Algebra and discrete mathematics
PY  - 2006
SP  - 101
EP  - 118
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2006_3_a8/
LA  - en
ID  - ADM_2006_3_a8
ER  - 
%0 Journal Article
%A Wolfgang Rump
%T Arithmetic properties of exceptional lattice paths
%J Algebra and discrete mathematics
%D 2006
%P 101-118
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2006_3_a8/
%G en
%F ADM_2006_3_a8
Wolfgang Rump. Arithmetic properties of exceptional lattice paths. Algebra and discrete mathematics, no. 3 (2006), pp. 101-118. https://geodesic-test.mathdoc.fr/item/ADM_2006_3_a8/