Criterions of supersolubility of some finite factorizable groups
Algebra and discrete mathematics, no. 3 (2005), pp. 46-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let AB be subgroups of a group G and XG. A subgroup A is said to be X-permutable with B if for some xX we have ABx=BxA [1]. We obtain some new criterions for supersolubility of a finite group G=AB, where A and B are supersoluble groups. In particular, we prove that a finite group G=AB is supersoluble provided AB are supersolube subgroups of G such that every primary cyclic subgroup of A X-permutes with every Sylow subgroup of B and if in return every primary cyclic subgroup of B X-permutes with every Sylow subgroup of A where X=F(G) is the Fitting subgroup of G.
Mots-clés : finite group, supersoluble group, permutable subgroups, product of subgroups.
@article{ADM_2005_3_a3,
     author = {Helena V. Legchekova},
     title = {Criterions of supersolubility of some finite factorizable groups},
     journal = {Algebra and discrete mathematics},
     pages = {46--55},
     publisher = {mathdoc},
     number = {3},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2005_3_a3/}
}
TY  - JOUR
AU  - Helena V. Legchekova
TI  - Criterions of supersolubility of some finite factorizable groups
JO  - Algebra and discrete mathematics
PY  - 2005
SP  - 46
EP  - 55
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2005_3_a3/
LA  - en
ID  - ADM_2005_3_a3
ER  - 
%0 Journal Article
%A Helena V. Legchekova
%T Criterions of supersolubility of some finite factorizable groups
%J Algebra and discrete mathematics
%D 2005
%P 46-55
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2005_3_a3/
%G en
%F ADM_2005_3_a3
Helena V. Legchekova. Criterions of supersolubility of some finite factorizable groups. Algebra and discrete mathematics, no. 3 (2005), pp. 46-55. https://geodesic-test.mathdoc.fr/item/ADM_2005_3_a3/