A decomposition theorem for semiprime rings
Algebra and discrete mathematics, no. 1 (2005), pp. 62-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

A ring A is called an FDI-ring if there exists a decomposition of the identity of A in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent e artinian if the ring eAe is Artinian. We prove that every semiprime FDI-ring is a direct product of a semisimple Artinian ring and a semiprime FDI-ring whose identity decomposition doesn't contain artinian idempotents.
Mots-clés : minor of a ring, local idempotent, semiprime ring, Peirce decomposition.
@article{ADM_2005_1_a5,
     author = {Marina Khibina},
     title = {A decomposition theorem for semiprime rings},
     journal = {Algebra and discrete mathematics},
     pages = {62--68},
     publisher = {mathdoc},
     number = {1},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2005_1_a5/}
}
TY  - JOUR
AU  - Marina Khibina
TI  - A decomposition theorem for semiprime rings
JO  - Algebra and discrete mathematics
PY  - 2005
SP  - 62
EP  - 68
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2005_1_a5/
LA  - en
ID  - ADM_2005_1_a5
ER  - 
%0 Journal Article
%A Marina Khibina
%T A decomposition theorem for semiprime rings
%J Algebra and discrete mathematics
%D 2005
%P 62-68
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2005_1_a5/
%G en
%F ADM_2005_1_a5
Marina Khibina. A decomposition theorem for semiprime rings. Algebra and discrete mathematics, no. 1 (2005), pp. 62-68. https://geodesic-test.mathdoc.fr/item/ADM_2005_1_a5/