Miniversal deformations of chains of linear mappings
Algebra and discrete mathematics, no. 1 (2005), pp. 47-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

V. I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix A, but also the family of all matrices close to A, can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations of quiver representations and obtain a miniversal deformation of matrices of chains of linear mappings $$ V_1\,\frac{\qquad}{\qquad}\,V_2\,\frac{\qquad}{\qquad}\,\cdots\,\frac{\qquad}{\qquad}\,V_t\,, $$ where all Vi are complex or real vector spaces and each line denotes or .
Mots-clés : Parametric matrices; Quivers; Miniversal deformations.
@article{ADM_2005_1_a4,
     author = {T. N. Gaiduk and V. V. Sergeichuk and N. A. Zharko},
     title = {Miniversal deformations of chains of linear mappings},
     journal = {Algebra and discrete mathematics},
     pages = {47--61},
     publisher = {mathdoc},
     number = {1},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2005_1_a4/}
}
TY  - JOUR
AU  - T. N. Gaiduk
AU  - V. V. Sergeichuk
AU  - N. A. Zharko
TI  - Miniversal deformations of chains of linear mappings
JO  - Algebra and discrete mathematics
PY  - 2005
SP  - 47
EP  - 61
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2005_1_a4/
LA  - en
ID  - ADM_2005_1_a4
ER  - 
%0 Journal Article
%A T. N. Gaiduk
%A V. V. Sergeichuk
%A N. A. Zharko
%T Miniversal deformations of chains of linear mappings
%J Algebra and discrete mathematics
%D 2005
%P 47-61
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2005_1_a4/
%G en
%F ADM_2005_1_a4
T. N. Gaiduk; V. V. Sergeichuk; N. A. Zharko. Miniversal deformations of chains of linear mappings. Algebra and discrete mathematics, no. 1 (2005), pp. 47-61. https://geodesic-test.mathdoc.fr/item/ADM_2005_1_a4/