Correct classes of modules
Algebra and discrete mathematics, no. 4 (2004), pp. 106-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a ring R, call a class C of R-modules (pure-) mono-correct if for any M,NC the existence of (pure) monomorphisms MN and NM implies MN. Extending results and ideas of Rososhek from rings to modules, it is shown that, for an R-module M, the class σM of all M-subgenerated modules is mono-correct if and only if M is semisimple, and the class of all weakly M-injective modules is mono-correct if and only if M is locally noetherian. Applying this to the functor ring of R-Mod provides a new proof that R is left pure semisimple if and only if R-Mod is pure-mono-correct. Furthermore, the class of pure-injective R-modules is always pure-mono-correct, and it is mono-correct if and only if R is von Neumann regular. The dual notion epi-correctness is also considered and it is shown that a ring R is left perfect if and only if the class of all flat R-modules is epi-correct. At the end some open problems are stated.
Mots-clés : Cantor-Bernstein Theorem, correct classes, homological classification of rings.
@article{ADM_2004_4_a7,
     author = {Robert Wisbauer},
     title = {Correct classes of modules},
     journal = {Algebra and discrete mathematics},
     pages = {106--118},
     publisher = {mathdoc},
     number = {4},
     year = {2004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2004_4_a7/}
}
TY  - JOUR
AU  - Robert Wisbauer
TI  - Correct classes of modules
JO  - Algebra and discrete mathematics
PY  - 2004
SP  - 106
EP  - 118
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2004_4_a7/
LA  - en
ID  - ADM_2004_4_a7
ER  - 
%0 Journal Article
%A Robert Wisbauer
%T Correct classes of modules
%J Algebra and discrete mathematics
%D 2004
%P 106-118
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2004_4_a7/
%G en
%F ADM_2004_4_a7
Robert Wisbauer. Correct classes of modules. Algebra and discrete mathematics, no. 4 (2004), pp. 106-118. https://geodesic-test.mathdoc.fr/item/ADM_2004_4_a7/