Two-step tilting for standardly stratified algebras
Algebra and discrete mathematics, no. 3 (2004), pp. 38-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the class of standardly stratified algebras introduced by Cline, Parshall and Scott, and its subclass of the so-called weakly properly stratified algebras, which generalizes the class of properly stratified algebras introduced by Dlab. We characterize when the Ringel dual of a standardly stratified algebra is weakly properly stratified and show the existence of a two-step tilting module. This allows us to calculate the finitistic dimension of such algebras. Finally, we also give a construction showing that each finite partially pre-ordered set gives rise to a weakly properly stratified algebras with a simple preserving duality.
Mots-clés : stratified algebra, two-step tilting, finitistic dimension.
@article{ADM_2004_3_a3,
     author = {Anders Frisk},
     title = {Two-step tilting for standardly stratified algebras},
     journal = {Algebra and discrete mathematics},
     pages = {38--59},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2004_3_a3/}
}
TY  - JOUR
AU  - Anders Frisk
TI  - Two-step tilting for standardly stratified algebras
JO  - Algebra and discrete mathematics
PY  - 2004
SP  - 38
EP  - 59
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2004_3_a3/
LA  - en
ID  - ADM_2004_3_a3
ER  - 
%0 Journal Article
%A Anders Frisk
%T Two-step tilting for standardly stratified algebras
%J Algebra and discrete mathematics
%D 2004
%P 38-59
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2004_3_a3/
%G en
%F ADM_2004_3_a3
Anders Frisk. Two-step tilting for standardly stratified algebras. Algebra and discrete mathematics, no. 3 (2004), pp. 38-59. https://geodesic-test.mathdoc.fr/item/ADM_2004_3_a3/