On wildness of idempotent generated algebras associated with extended Dynkin diagrams
Algebra and discrete mathematics, no. 3 (2004), pp. 1-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let Λ denote an extended Dynkin diagram with vertex set Λ0={0,1,,n}. For a vertex i, denote by S(i) the set of vertices j such that there is an edge joining i and j; one assumes the diagram has a unique vertex p, say p=0, with |S(p)|=3. Further, denote by Λ0 the full subgraph of Λ with vertex set Λ0{0}. Let Δ=(δi|iΛ0)Z|Λ0| be an imaginary root of Λ, and let k be a field of arbitrary characteristic (with unit element 1). We prove that if Λ is an extended Dynkin diagram of type D~4, E~6 or E~7, then the k-algebra Qk(Λ,Δ) with generators ei, iΛ0{0}, and relations ei2=ei, eiej=0 if i and ji belong to the same connected component of Λ0, and i=1nδiei=δ01 has wild representation type.
Mots-clés : idempotent, extended Dynkin diagram, representation, wild typ.
@article{ADM_2004_3_a0,
     author = {Vitalij M. Bondarenko},
     title = {On wildness of idempotent generated algebras associated with extended {Dynkin} diagrams},
     journal = {Algebra and discrete mathematics},
     pages = {1--11},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2004_3_a0/}
}
TY  - JOUR
AU  - Vitalij M. Bondarenko
TI  - On wildness of idempotent generated algebras associated with extended Dynkin diagrams
JO  - Algebra and discrete mathematics
PY  - 2004
SP  - 1
EP  - 11
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2004_3_a0/
LA  - en
ID  - ADM_2004_3_a0
ER  - 
%0 Journal Article
%A Vitalij M. Bondarenko
%T On wildness of idempotent generated algebras associated with extended Dynkin diagrams
%J Algebra and discrete mathematics
%D 2004
%P 1-11
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2004_3_a0/
%G en
%F ADM_2004_3_a0
Vitalij M. Bondarenko. On wildness of idempotent generated algebras associated with extended Dynkin diagrams. Algebra and discrete mathematics, no. 3 (2004), pp. 1-11. https://geodesic-test.mathdoc.fr/item/ADM_2004_3_a0/