Minimax sums of posets and the quadratic Tits form
Algebra and discrete mathematics, no. 1 (2004), pp. 17-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let S be an infinite poset (partially ordered set) and Z0S0 the subset of the cartesian product ZS0 consisting of all vectors z=(zi) with finite number of nonzero coordinates. We call the quadratic Tits form of S (by analogy with the case of a finite poset) the form qS:Z0S0Z defined by the equality $q_S(z)=z_0^2+\sum_{i\in S} z_i^2 +\sum_{i$. In this paper we study the structure of infinite posets with positive Tits form. In particular, there arise posets of specific form which we call minimax sums of posets.
Mots-clés : poset, minimax sum, the rank of a sum, the Tits form.
@article{ADM_2004_1_a2,
     author = {Vitalij M. Bondarenko and Andrej M. Polishchuk},
     title = {Minimax sums of posets and the quadratic {Tits} form},
     journal = {Algebra and discrete mathematics},
     pages = {17--36},
     publisher = {mathdoc},
     number = {1},
     year = {2004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2004_1_a2/}
}
TY  - JOUR
AU  - Vitalij M. Bondarenko
AU  - Andrej M. Polishchuk
TI  - Minimax sums of posets and the quadratic Tits form
JO  - Algebra and discrete mathematics
PY  - 2004
SP  - 17
EP  - 36
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2004_1_a2/
LA  - en
ID  - ADM_2004_1_a2
ER  - 
%0 Journal Article
%A Vitalij M. Bondarenko
%A Andrej M. Polishchuk
%T Minimax sums of posets and the quadratic Tits form
%J Algebra and discrete mathematics
%D 2004
%P 17-36
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2004_1_a2/
%G en
%F ADM_2004_1_a2
Vitalij M. Bondarenko; Andrej M. Polishchuk. Minimax sums of posets and the quadratic Tits form. Algebra and discrete mathematics, no. 1 (2004), pp. 17-36. https://geodesic-test.mathdoc.fr/item/ADM_2004_1_a2/