On large indecomposable modules, endo-wild representation type and right pure semisimple rings
Algebra and discrete mathematics, no. 2 (2003), pp. 93-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of large indecomposable right R-modules over a right artinian ring R is discussed in connection with the pure semisimplicity problem and the endo-wildness of the category Mod(R) of right R-modules. Some conjectures and open problems are presented.
Mots-clés : Brauer–Thrall conjectures, pure semisimple rings, Kaplansky's test problem, endo-wild representation type, prinjective modules/.
@article{ADM_2003_2_a5,
     author = {Daniel Simson},
     title = {On large indecomposable modules, endo-wild representation type and right pure semisimple rings},
     journal = {Algebra and discrete mathematics},
     pages = {93--118},
     publisher = {mathdoc},
     number = {2},
     year = {2003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2003_2_a5/}
}
TY  - JOUR
AU  - Daniel Simson
TI  - On large indecomposable modules, endo-wild representation type and right pure semisimple rings
JO  - Algebra and discrete mathematics
PY  - 2003
SP  - 93
EP  - 118
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2003_2_a5/
LA  - en
ID  - ADM_2003_2_a5
ER  - 
%0 Journal Article
%A Daniel Simson
%T On large indecomposable modules, endo-wild representation type and right pure semisimple rings
%J Algebra and discrete mathematics
%D 2003
%P 93-118
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2003_2_a5/
%G en
%F ADM_2003_2_a5
Daniel Simson. On large indecomposable modules, endo-wild representation type and right pure semisimple rings. Algebra and discrete mathematics, no. 2 (2003), pp. 93-118. https://geodesic-test.mathdoc.fr/item/ADM_2003_2_a5/