On the representation of a~number as a~sum of the k-th powers in an arithmetic progression
Algebra and discrete mathematics, no. 2 (2003), pp. 87-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain the asymptotic formula for a natural nx which representate as a sum of two non-negative k-th powers in an arithmetic progression.
Mots-clés : asymptotic formula, exponential sum, number of representation.
@article{ADM_2003_2_a4,
     author = {N. S. Prosyanyuk},
     title = {On the representation of a~number as a~sum of the $k$-th powers in an arithmetic progression},
     journal = {Algebra and discrete mathematics},
     pages = {87--92},
     publisher = {mathdoc},
     number = {2},
     year = {2003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2003_2_a4/}
}
TY  - JOUR
AU  - N. S. Prosyanyuk
TI  - On the representation of a~number as a~sum of the $k$-th powers in an arithmetic progression
JO  - Algebra and discrete mathematics
PY  - 2003
SP  - 87
EP  - 92
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2003_2_a4/
LA  - en
ID  - ADM_2003_2_a4
ER  - 
%0 Journal Article
%A N. S. Prosyanyuk
%T On the representation of a~number as a~sum of the $k$-th powers in an arithmetic progression
%J Algebra and discrete mathematics
%D 2003
%P 87-92
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2003_2_a4/
%G en
%F ADM_2003_2_a4
N. S. Prosyanyuk. On the representation of a~number as a~sum of the $k$-th powers in an arithmetic progression. Algebra and discrete mathematics, no. 2 (2003), pp. 87-92. https://geodesic-test.mathdoc.fr/item/ADM_2003_2_a4/