Flows in graphs and the homology of free categories
Algebra and discrete mathematics, no. 2 (2003), pp. 36-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the R-module of generalized flows in a graph with coefficients in the R-representation of the graph over a ring R with 1 and show that this R-module is isomorphic to the first derived functor of the colimit. We generalize Kirchhoff's laws and build an exact sequence for calculating the R-module of flows in the union of graphs.
Mots-clés : homology of categories, derived of colimit, flows in graphs, Kirchhoff laws.
@article{ADM_2003_2_a2,
     author = {Ahmet A. Husainov and Hamza \c{C}ali\c{s}ici},
     title = {Flows in graphs and the homology of free categories},
     journal = {Algebra and discrete mathematics},
     pages = {36--46},
     publisher = {mathdoc},
     number = {2},
     year = {2003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2003_2_a2/}
}
TY  - JOUR
AU  - Ahmet A. Husainov
AU  - Hamza Çalişici
TI  - Flows in graphs and the homology of free categories
JO  - Algebra and discrete mathematics
PY  - 2003
SP  - 36
EP  - 46
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2003_2_a2/
LA  - en
ID  - ADM_2003_2_a2
ER  - 
%0 Journal Article
%A Ahmet A. Husainov
%A Hamza Çalişici
%T Flows in graphs and the homology of free categories
%J Algebra and discrete mathematics
%D 2003
%P 36-46
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2003_2_a2/
%G en
%F ADM_2003_2_a2
Ahmet A. Husainov; Hamza Çalişici. Flows in graphs and the homology of free categories. Algebra and discrete mathematics, no. 2 (2003), pp. 36-46. https://geodesic-test.mathdoc.fr/item/ADM_2003_2_a2/