An additive divisor problem in Z[i]
Algebra and discrete mathematics, no. 1 (2003), pp. 103-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let τ(α) be the number of divisors of the Gaussian integer α. An asymptotic formula for the summatory function N(α)xτ(α)τ(α+β) is obtained under the condition N(β)x3/8. This is a generalization of the well-known additive divisor problem for the natural numbers.
Mots-clés : additive divisor problem; asymptotic formula.
@article{ADM_2003_1_a9,
     author = {O. V. Savasrtu and P. D. Varbanets},
     title = {An additive divisor problem in $\mathbb{Z}[i]$},
     journal = {Algebra and discrete mathematics},
     pages = {103--110},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2003_1_a9/}
}
TY  - JOUR
AU  - O. V. Savasrtu
AU  - P. D. Varbanets
TI  - An additive divisor problem in $\mathbb{Z}[i]$
JO  - Algebra and discrete mathematics
PY  - 2003
SP  - 103
EP  - 110
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2003_1_a9/
LA  - en
ID  - ADM_2003_1_a9
ER  - 
%0 Journal Article
%A O. V. Savasrtu
%A P. D. Varbanets
%T An additive divisor problem in $\mathbb{Z}[i]$
%J Algebra and discrete mathematics
%D 2003
%P 103-110
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2003_1_a9/
%G en
%F ADM_2003_1_a9
O. V. Savasrtu; P. D. Varbanets. An additive divisor problem in $\mathbb{Z}[i]$. Algebra and discrete mathematics, no. 1 (2003), pp. 103-110. https://geodesic-test.mathdoc.fr/item/ADM_2003_1_a9/