Uniform ball structures
Algebra and discrete mathematics, no. 1 (2003), pp. 93-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

A ball structure is a triple B=(X,P,B), where X,P are nonempty sets and, for all xX, αP, B(x,α) is a subset of X,xB(x,α), which is called a ball of radius α around x. We introduce the class of uniform ball structures as an asymptotic counterpart of the class of uniform topological spaces. We show that every uniform ball structure can be approximated by metrizable ball structures. We also define two types of ball structures closed to being metrizable, and describe the extremal elements in the classes of ball structures with fixed support X.
Mots-clés : ball structure, metrizability.
@article{ADM_2003_1_a8,
     author = {I. V. Protasov},
     title = {Uniform ball structures},
     journal = {Algebra and discrete mathematics},
     pages = {93--102},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2003_1_a8/}
}
TY  - JOUR
AU  - I. V. Protasov
TI  - Uniform ball structures
JO  - Algebra and discrete mathematics
PY  - 2003
SP  - 93
EP  - 102
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2003_1_a8/
LA  - en
ID  - ADM_2003_1_a8
ER  - 
%0 Journal Article
%A I. V. Protasov
%T Uniform ball structures
%J Algebra and discrete mathematics
%D 2003
%P 93-102
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2003_1_a8/
%G en
%F ADM_2003_1_a8
I. V. Protasov. Uniform ball structures. Algebra and discrete mathematics, no. 1 (2003), pp. 93-102. https://geodesic-test.mathdoc.fr/item/ADM_2003_1_a8/