A note on maximal ideals in ordered semigroups
Algebra and discrete mathematics, no. 1 (2003), pp. 32-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

In commutative rings having an identity element, every maximal ideal is a prime ideal, but the converse statement does not hold, in general. According to the present note, similar results for ordered semigroups and semigroups-without order-also hold. In fact, we prove that in commutative ordered semigroups with identity each maximal ideal is a prime ideal, the converse statement does not hold, in general.
Mots-clés : maximal ideal, prime ideal in ordered semigroups.
@article{ADM_2003_1_a3,
     author = {N. Kehayopulu and J. Ponizovskii and M. Tsingelis},
     title = {A note on maximal ideals in ordered semigroups},
     journal = {Algebra and discrete mathematics},
     pages = {32--35},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2003_1_a3/}
}
TY  - JOUR
AU  - N. Kehayopulu
AU  - J. Ponizovskii
AU  - M. Tsingelis
TI  - A note on maximal ideals in ordered semigroups
JO  - Algebra and discrete mathematics
PY  - 2003
SP  - 32
EP  - 35
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2003_1_a3/
LA  - en
ID  - ADM_2003_1_a3
ER  - 
%0 Journal Article
%A N. Kehayopulu
%A J. Ponizovskii
%A M. Tsingelis
%T A note on maximal ideals in ordered semigroups
%J Algebra and discrete mathematics
%D 2003
%P 32-35
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2003_1_a3/
%G en
%F ADM_2003_1_a3
N. Kehayopulu; J. Ponizovskii; M. Tsingelis. A note on maximal ideals in ordered semigroups. Algebra and discrete mathematics, no. 1 (2003), pp. 32-35. https://geodesic-test.mathdoc.fr/item/ADM_2003_1_a3/