Monodromization method in the theory of almost-periodic equations
Algebra i analiz, Tome 25 (2013) no. 2, pp. 203-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2013_25_2_a9,
     author = {A. A. Fedotov},
     title = {Monodromization method in the theory of almost-periodic equations},
     journal = {Algebra i analiz},
     pages = {203--235},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2013},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a9/}
}
TY  - JOUR
AU  - A. A. Fedotov
TI  - Monodromization method in the theory of almost-periodic equations
JO  - Algebra i analiz
PY  - 2013
SP  - 203
EP  - 235
VL  - 25
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a9/
LA  - ru
ID  - AA_2013_25_2_a9
ER  - 
%0 Journal Article
%A A. A. Fedotov
%T Monodromization method in the theory of almost-periodic equations
%J Algebra i analiz
%D 2013
%P 203-235
%V 25
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a9/
%G ru
%F AA_2013_25_2_a9
A. A. Fedotov. Monodromization method in the theory of almost-periodic equations. Algebra i analiz, Tome 25 (2013) no. 2, pp. 203-235. https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a9/

[1] Buslaev V. S., “Adiabaticheskoe vozmuschenie periodicheskogo potentsiala”, Teor. i mat. fiz., 58:2 (1984), 233–243 | MR | Zbl

[2] Buslaev V. S., Dmitrieva L. A., “Adiabaticheskoe vozmuschenie periodicheskogo potentsiala. II”, Teor. i mat. fiz., 73:3 (1987), 430–442 | MR | Zbl

[3] Buslaev V. S., “Kvaziklassicheskoe priblizhenie dlya uravnenii s periodicheskimi koeffitsientami”, Uspekhi mat. nauk, 42:6 (1987), 77–98 | MR | Zbl

[4] Buslaev V. S., Dmitrieva L. A., “Blokhovskii elektron vo vneshnem pole”, Algebra i analiz, 1:2 (1989), 1–29 | MR | Zbl

[5] Buslaev V. S., Spectral properties of the operators $H\psi=-\psi_{xx}+p(x)\psi+v(\epsilon x)\psi$, $p$ is periodic, Oper. Theory Adv. Appl., 46, Birkhäuser, Basel, 1990 | MR

[6] Buslaev V., “On spectral properties of adiabatically perturbed Scrödinger operators with periodic potentials”, Seminare sur les Equations aux Derivees Partielles (1990–1991), Ecole Polytech., Palaiseau, 1991, Exp. no. XXIII, 15 pp. | MR

[7] Buslaev V., Grigis A., “Imaginary parts of Stark–Wannier resonances”, J. Math. Phys., 39:5 (1998), 2520–2550 | DOI | MR | Zbl

[8] Buslaev V. S., Buslaeva M. V., Grizhis A., “Asimptotiki koeffitsienta otrazheniya”, Algebra i analiz, 16:3 (2004), 1–23 | MR | Zbl

[9] Buslaev V., Fedotov A., “Complex WKB method for Harper's equation”, Rep. Mittag–Leffler Inst., 11 (1993), 3–69 | MR

[10] Buslaev V., Fedotov A., “On a class of martices related to Harper's equation”, Rep. Mittag–Leffler Inst., 19 (1993), 3–39 | MR

[11] Buslaev V., Fedotov A., “Kompleksnyi metod VKB dlya uravneniya Kharpera”, Algebra i analiz, 6:3 (1994), 59–83 | MR | Zbl

[12] Buslaev V., Fedotov A., “The functional structure of the monodromy matrix for Harper's equation”, Oper. Theory Adv. Appl., 70, Birkhäuser, Basel, 1994, 321–342 | MR | Zbl

[13] Buslaev V., Fedotov A., “The monodromization and Harper equation”, Séminaires sur les Équations aux Dérivées Partielles (1993–1994), École Polytech., Palaiseau, 1994, Exp. no. XXI, 23 pp. | MR

[14] Buslaev V. S., Fedotov A. A., “Blokhovskie resheniya dlya raznostnykh uravnenii”, Algebra i analiz, 7:4 (1994), 74–122 | MR | Zbl

[15] Buslaev V. S., Fedotov A. A., “Uravnenie Kharpera: Monodromizatsiya bez kvaziklassiki”, Algebra i analiz, 8:2 (1996), 65–97 | MR | Zbl

[16] Buslaev V., Fedotov A., “Spectre d'une matrice de monodromie pour l'equation de Harper”, Equations aux derivees partielles, St. Jean de Monts, 1998, Exp. no. IV, 21 pp.

[17] Buslaev V., Fedotov A., “On the difference equations with periodic coefficients”, Adv. Theor. Math. Phys., 5 (2002), 1105–1168 | MR

[18] Dinaburg E. I., Sinai Ya. G., “Ob odnomernom uravnenii Shrëdingera s kvaziperiodicheskim potentsialom”, Funkts. anal. i ego pril., 9:4 (1975), 8–21 | MR | Zbl

[19] Fedotov A. A., Kompleksnyi metod VKB dlya adiabaticheskikh vozmuschenii periodicheskikh operatorov Shredingera i spektry pochti-periodicheskikh operatorov, Dokt. dis., POMI, SPb., 2011

[20] Fedotov A. A., “Adiabaticheskie pochti-periodicheskie operatory Shredingera”, Zap. nauch. semin. POMI, 379, 2010, 103–141

[21] Fedotov A., Klopp F., “A complex WKB method for adiabatic problems”, Asympt. Anal., 27 (2001), 219–264 | MR | Zbl

[22] Fedotov A., Klopp F., “Anderson transitions for a family of almost periodic Schrödinger equations in the adiabatic case”, Comm. Math. Phys., 227 (2002), 1–92 | DOI | MR | Zbl

[23] Fedotov A., Klopp F., “The spectral theory of the adiabatic quasi-periodic operators on the real line”, Markov Process. Related Fields, 9:4 (2004), 579–615 | MR

[24] Fedotov A., Klopp F., “On the singular spectrum of quasi-periodic Schrödinger operator in adiabatic limit”, Ann. H. Poincaré, 5 (2004), 929–978 | DOI | MR | Zbl

[25] Fedotov F., Klopp F., “Geometric tools of the adiabatic complex WKB method”, Asympt. Anal., 39:3–4 (2004), 309–357 | MR | Zbl

[26] Fedotov A., Klopp F., “On the absolutely continuous spectrum of an one-dimensional quasi-periodic Schrödinger operator in adiabatic limit”, Trans. Amer. Math. Soc., 357 (2005), 4481–4516 | DOI | MR | Zbl

[27] Fedotov A., Klopp F., “Strong resonant tunneling, level repulsion and spectral type for one-dimensional adiabatic quasi-periodic Schrödinger operators”, Ann. Sci. Ecole Norm. Sup. (4), 38:6 (2005), 889–950 | MR | Zbl

[28] Fedotov A., Klopp F., “Weakly resonant tunneling interactions for adiabatic quasi-periodic Schrödinger operators”, Mém. Soc. Math. Fr. (NS), 104 (2006), 1–108 | MR

[29] Fedotov A., Klopp F., “Pointwise Existence of the Lyapunov Exponent for a Quasiperiodic Equation”, Mathematical results in quantum mechanics, World Sci. Publ., River Edge, NJ, 2008, 66–78 | MR | Zbl

[30] Guillement J. P., Helffer B., Treton P., “Walk inside Hofstadter's butterfly”, J. Phys. France, 50 (1989), 2019–2058 | DOI

[31] Helffer B., Sjöstrand J., “Analyse semi-classique pour l'équation de Harper (avec application à léquation de Schrödinger avec champ magnétique)”, Mém. Soc. Math. Fr. (NS), 34 (1988), 1–113 | MR | Zbl

[32] Herman M.-R., “Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnol'd et de Moser sur le tore de dimension 2”, Comment. Math. Helv., 58:3 (1983), 453–502 | DOI | MR | Zbl

[33] Hofstadter D., “Energy levels and Wave functions of Bloch electrons in rational and irrational magnetic fields”, Phys. Rev. B, 14 (1976), 2239–2249 | DOI

[34] Pastur L., Figotin A., Spectra of Random and Almost-Periodic Operators, Springer-Verlag, Berlin, 1992 | MR

[35] Sorets E., Spencer T., “Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials”, Comm. Math. Phys., 142:3 (1991), 543–566 | DOI | MR | Zbl

[36] Wilkinson M., “Critical properties of electron eigenstates in incommensurate systems”, Proc. Roy. Soc. London Ser. A, 391 (1984), 305–350 | DOI | MR