Examples of the Hamiltonian structures from the theory of integrable models and their quantization
Algebra i analiz, Tome 25 (2013) no. 2, pp. 193-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2013_25_2_a8,
     author = {L. D. Faddeev},
     title = {Examples of the {Hamiltonian} structures from the theory of integrable models and their quantization},
     journal = {Algebra i analiz},
     pages = {193--202},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2013},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a8/}
}
TY  - JOUR
AU  - L. D. Faddeev
TI  - Examples of the Hamiltonian structures from the theory of integrable models and their quantization
JO  - Algebra i analiz
PY  - 2013
SP  - 193
EP  - 202
VL  - 25
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a8/
LA  - ru
ID  - AA_2013_25_2_a8
ER  - 
%0 Journal Article
%A L. D. Faddeev
%T Examples of the Hamiltonian structures from the theory of integrable models and their quantization
%J Algebra i analiz
%D 2013
%P 193-202
%V 25
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a8/
%G ru
%F AA_2013_25_2_a8
L. D. Faddeev. Examples of the Hamiltonian structures from the theory of integrable models and their quantization. Algebra i analiz, Tome 25 (2013) no. 2, pp. 193-202. https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a8/

[1] Buslaev V. S., “Proizvodyaschii integral i kanonicheskii operator Maslova v metode VKB”, Funkts. anal. i ego pril., 3:3 (1969), 17–31 | MR | Zbl

[2] Faddeev L. D., Volkov A. Yu., “Abelian current algebra and the Virasoro algebra on the lattice”, Phys. Lett. B, 315 (1993), 311–318 | DOI | MR | Zbl

[3] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl

[4] Gervais J.-L., “Transport matrices assiciated with the Virasoro algebra”, Phys. Lett. B, 160 (1985), 279–282 | DOI | MR

[5] Faddeev L. D., Takhtajan L. A., “Liouville model on the lattice”, Field Theory, Quantum Gravity and Strings (Meudon/Paris VI, France 1984/85), Lecture Notes in Phys., 246, Springer, Berlin, 1986, 166–179 | DOI | MR

[6] Sklyanin E. K., “Volchok Goryacheva–Chaplygina i metod obratnoi zadachi rasseyaniya”, Zap. nauch. semin. LOMI, 133, 1984, 236–257 | MR | Zbl

[7] Schützenberger M. P., “Une interprétation de certaines solution de l'equation functionelle”, C. R. Acad. Sci. Paris, 236 (1953), 352–353 | MR

[8] Faddeev L., Kashaev R., “Quantum Dilogarithm”, Modern Phys. Lett. A, 9 (1994), 427–434 ; arXiv: hep-th/9310070 | DOI | MR | Zbl

[9] Volkov A. Yu., “Beyond the ‘Pentagon Identity’ ”, Lett. Math. Phys., 39 (1997), 393–397 | DOI | MR | Zbl

[10] Faddeev L. D., “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34 (1995), 249–254 ; arXiv: hep-th/9504111 | DOI | MR | Zbl

[11] Faddeev L. D., Modular double of quantum group, arXiv: math/9912078[math.QA]