Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2013_25_2_a8, author = {L. D. Faddeev}, title = {Examples of the {Hamiltonian} structures from the theory of integrable models and their quantization}, journal = {Algebra i analiz}, pages = {193--202}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2013}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a8/} }
TY - JOUR AU - L. D. Faddeev TI - Examples of the Hamiltonian structures from the theory of integrable models and their quantization JO - Algebra i analiz PY - 2013 SP - 193 EP - 202 VL - 25 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a8/ LA - ru ID - AA_2013_25_2_a8 ER -
L. D. Faddeev. Examples of the Hamiltonian structures from the theory of integrable models and their quantization. Algebra i analiz, Tome 25 (2013) no. 2, pp. 193-202. https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a8/
[1] Buslaev V. S., “Proizvodyaschii integral i kanonicheskii operator Maslova v metode VKB”, Funkts. anal. i ego pril., 3:3 (1969), 17–31 | MR | Zbl
[2] Faddeev L. D., Volkov A. Yu., “Abelian current algebra and the Virasoro algebra on the lattice”, Phys. Lett. B, 315 (1993), 311–318 | DOI | MR | Zbl
[3] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl
[4] Gervais J.-L., “Transport matrices assiciated with the Virasoro algebra”, Phys. Lett. B, 160 (1985), 279–282 | DOI | MR
[5] Faddeev L. D., Takhtajan L. A., “Liouville model on the lattice”, Field Theory, Quantum Gravity and Strings (Meudon/Paris VI, France 1984/85), Lecture Notes in Phys., 246, Springer, Berlin, 1986, 166–179 | DOI | MR
[6] Sklyanin E. K., “Volchok Goryacheva–Chaplygina i metod obratnoi zadachi rasseyaniya”, Zap. nauch. semin. LOMI, 133, 1984, 236–257 | MR | Zbl
[7] Schützenberger M. P., “Une interprétation de certaines solution de l'equation functionelle”, C. R. Acad. Sci. Paris, 236 (1953), 352–353 | MR
[8] Faddeev L., Kashaev R., “Quantum Dilogarithm”, Modern Phys. Lett. A, 9 (1994), 427–434 ; arXiv: hep-th/9310070 | DOI | MR | Zbl
[9] Volkov A. Yu., “Beyond the ‘Pentagon Identity’ ”, Lett. Math. Phys., 39 (1997), 393–397 | DOI | MR | Zbl
[10] Faddeev L. D., “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34 (1995), 249–254 ; arXiv: hep-th/9504111 | DOI | MR | Zbl
[11] Faddeev L. D., Modular double of quantum group, arXiv: math/9912078[math.QA]