Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2013_25_2_a7, author = {C. Ortoleva and G. Perelman}, title = {Nondispersive vanishing and blow up at infinity for the energy critical nonlinear {Schr\"odinger} equation in~$\mathbb R^3$}, journal = {Algebra i analiz}, pages = {162--192}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2013}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a7/} }
TY - JOUR AU - C. Ortoleva AU - G. Perelman TI - Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schr\"odinger equation in~$\mathbb R^3$ JO - Algebra i analiz PY - 2013 SP - 162 EP - 192 VL - 25 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a7/ LA - en ID - AA_2013_25_2_a7 ER -
%0 Journal Article %A C. Ortoleva %A G. Perelman %T Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schr\"odinger equation in~$\mathbb R^3$ %J Algebra i analiz %D 2013 %P 162-192 %V 25 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a7/ %G en %F AA_2013_25_2_a7
C. Ortoleva; G. Perelman. Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schr\"odinger equation in~$\mathbb R^3$. Algebra i analiz, Tome 25 (2013) no. 2, pp. 162-192. https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a7/
[1] Buslaev V. S., Perelman G. S., “Scattering for the nonlinear Schrödinger equation: states close to a soliton”, St. Petersburg Math. J., 4:6 (1993), 1111–1142 | MR | Zbl
[2] Cazenave Th., Semilinear Schrödinger equations, Courant Lecture Notes in Math., 10, Amer. Math. Soc., Courant Inst. Math. Sci., Providence, RI, 2003 | MR | Zbl
[3] Cazenave Th., Weissler Fred B., “The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$”, Nonlinear Anal., 14:10 (1990), 807–836 | DOI | MR | Zbl
[4] Donninger R., Krieger J., Nonscattering solutions and blow up at infinity for the critical wave equation, 2012, arXiv: 1201.3258
[5] Duyckaerts Th., Merle F., “Dynamic of threshold solutions for energy-critical NLS”, Geom. Funct. Anal., 18:6 (2009), 1787–1840 | DOI | MR | Zbl
[6] Kenig C., Merle F., “Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case”, Invent. Math., 166:3 (2006), 645–675 | DOI | MR | Zbl
[7] Krieger J., Schlag W., “Stable manifolds for all monic supercritical NLS in one dimension”, J. Amer. Math. Soc., 19:4 (2006), 815–920 | DOI | MR | Zbl
[8] Krieger J., Schlag W., Tataru D., “Slow Blow-up solutions for the $H^1(\mathbb R^3)$ critical focusing semilinear wave equation in $\mathbb R^3$”, Duke Math. J., 147:1 (2009), 1–53 | DOI | MR | Zbl
[9] Perelman G., Blow up dynamics for equivariant critical Schrödinger maps, Preprint, 2012