Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schr\"odinger equation in~R3
Algebra i analiz, Tome 25 (2013) no. 2, pp. 162-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

The energy critical focusing nonlinear Schrödinger equation iψt=Δψ|ψ|4ψ in R3 is considered; it is proved that, for any ν and α0 sufficiently small, there exist radial finite energy solutions of the form ψ(x,t)=eiα(t)λ1/2(t)W(λ(t)x)+eiΔtζ+oH˙1(1) as t+, where α(t)=α0lnt, λ(t)=tν, W(x)=(1+13|x|2)1/2 is the ground state, and ζ is arbitrary small in H˙1.
Mots-clés : energy critical focusing nonlinear Schrödinger equation, Cauchy problem, ground state, blow up.
@article{AA_2013_25_2_a7,
     author = {C. Ortoleva and G. Perelman},
     title = {Nondispersive vanishing and blow up at infinity for the energy critical nonlinear {Schr\"odinger} equation in~$\mathbb R^3$},
     journal = {Algebra i analiz},
     pages = {162--192},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2013},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a7/}
}
TY  - JOUR
AU  - C. Ortoleva
AU  - G. Perelman
TI  - Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schr\"odinger equation in~$\mathbb R^3$
JO  - Algebra i analiz
PY  - 2013
SP  - 162
EP  - 192
VL  - 25
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a7/
LA  - en
ID  - AA_2013_25_2_a7
ER  - 
%0 Journal Article
%A C. Ortoleva
%A G. Perelman
%T Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schr\"odinger equation in~$\mathbb R^3$
%J Algebra i analiz
%D 2013
%P 162-192
%V 25
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a7/
%G en
%F AA_2013_25_2_a7
C. Ortoleva; G. Perelman. Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schr\"odinger equation in~$\mathbb R^3$. Algebra i analiz, Tome 25 (2013) no. 2, pp. 162-192. https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a7/

[1] Buslaev V. S., Perelman G. S., “Scattering for the nonlinear Schrödinger equation: states close to a soliton”, St. Petersburg Math. J., 4:6 (1993), 1111–1142 | MR | Zbl

[2] Cazenave Th., Semilinear Schrödinger equations, Courant Lecture Notes in Math., 10, Amer. Math. Soc., Courant Inst. Math. Sci., Providence, RI, 2003 | MR | Zbl

[3] Cazenave Th., Weissler Fred B., “The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$”, Nonlinear Anal., 14:10 (1990), 807–836 | DOI | MR | Zbl

[4] Donninger R., Krieger J., Nonscattering solutions and blow up at infinity for the critical wave equation, 2012, arXiv: 1201.3258

[5] Duyckaerts Th., Merle F., “Dynamic of threshold solutions for energy-critical NLS”, Geom. Funct. Anal., 18:6 (2009), 1787–1840 | DOI | MR | Zbl

[6] Kenig C., Merle F., “Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case”, Invent. Math., 166:3 (2006), 645–675 | DOI | MR | Zbl

[7] Krieger J., Schlag W., “Stable manifolds for all monic supercritical NLS in one dimension”, J. Amer. Math. Soc., 19:4 (2006), 815–920 | DOI | MR | Zbl

[8] Krieger J., Schlag W., Tataru D., “Slow Blow-up solutions for the $H^1(\mathbb R^3)$ critical focusing semilinear wave equation in $\mathbb R^3$”, Duke Math. J., 147:1 (2009), 1–53 | DOI | MR | Zbl

[9] Perelman G., Blow up dynamics for equivariant critical Schrödinger maps, Preprint, 2012