Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2013_25_2_a4, author = {I. E. Egorova and L. A. Pastur}, title = {On asymptotic properties of polynomials orthogonal with respect to varying weights and related topics of spectral theory}, journal = {Algebra i analiz}, pages = {101--124}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2013}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a4/} }
TY - JOUR AU - I. E. Egorova AU - L. A. Pastur TI - On asymptotic properties of polynomials orthogonal with respect to varying weights and related topics of spectral theory JO - Algebra i analiz PY - 2013 SP - 101 EP - 124 VL - 25 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a4/ LA - ru ID - AA_2013_25_2_a4 ER -
%0 Journal Article %A I. E. Egorova %A L. A. Pastur %T On asymptotic properties of polynomials orthogonal with respect to varying weights and related topics of spectral theory %J Algebra i analiz %D 2013 %P 101-124 %V 25 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a4/ %G ru %F AA_2013_25_2_a4
I. E. Egorova; L. A. Pastur. On asymptotic properties of polynomials orthogonal with respect to varying weights and related topics of spectral theory. Algebra i analiz, Tome 25 (2013) no. 2, pp. 101-124. https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a4/
[1] Akhiezer N. I., “Orthogonal polynomials on several intervals”, Soviet Math. Dokl., 1 (1960), 989–992 | MR | Zbl
[2] Akhiezer N. I., Classical Moment Problem, Haffner, New York, 1965
[3] Akhiezer N., Tomchuk Yu., “On the theory of orthogonal polynomials over several intervals”, Dokl. Akad. Nauk SSSR, 138 (1961), 743–745 | MR
[4] Aptekarev A. I., “Asymptotic properties of polynomials orthogonal on a system of contours, and periodic motions of Toda chains”, Math. USSR Sb., 53:1 (1986), 233–260 | DOI | MR | Zbl
[5] Aptekarev A. I., Matrix Riemann–Hilbert analysis for the case of higher genus – asymptotics of polynomials orthogonal on a system of intervals, KIAM Preprint No 28, Moscow, 2008, 23 pp.
[6] Bessis D., Itzykson C., Zuber J.-B., “Quantum field theory techniques in graphical enumeration”, Adv. in Appl. Math., 1 (1980), 109–157 | DOI | MR | Zbl
[7] Bleher P. M., Its A. R., “Semiclassical asymptotics of orthogonal polynomials, Riemann–Hilbert problem, and universality in the matrix model”, Ann. Math., 150 (1999), 185–266 | DOI | MR | Zbl
[8] Bleher P., Its A. (Eds.), Random Matrix Models and Their Applications, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[9] Bonnet G., David F., Eynard B., “Breakdown of universality in multi-cut matrix models”, J. Phys. A, 33 (2000), 6739–6768 | DOI | MR | Zbl
[10] Brézin E., Kazakov V., Serban D., Wiegmann P., Zabrodin A. (Eds.), Applications of Random Matrices in Physics, Springer, Berlin, 2006 | MR | Zbl
[11] Buslaev V., Pastur L., “A class of multi-interval eigenvalue distributions of matrix models and related structures”, Asymptotic Combinatorics with Applications to Mathematical Physics, Kluwer, Dordrecht, 2002, 51–77 | DOI | MR | Zbl
[12] Buyarov V. S., Rakhmanov E. A., “Families of equilibrium measures in an external field on the real axis”, Sb. Math., 190:6 (1999), 791–802 | DOI | MR | Zbl
[13] Deift P., Orthogonal Polynomials and Random Matrices: a Riemann–Hilbert Approach, Amer. Math. Soc., Providence, RI, 1999 | MR
[14] Deift P., Its A. R., Zhou X., “A Riemann–Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics”, Ann. of Math. (2), 146:1 (1997), 149–235 | DOI | MR | Zbl
[15] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[16] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure Appl. Math., 52:12 (1999), 1491–1552 | MR | Zbl
[17] Farkas H., Kra I., Riemann Surfaces, Grad. Texts in Math., 71, Springer, Berlin, 1980 | DOI | MR | Zbl
[18] Fernandez R., Frohlich J., Sokal A., Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory, Springer, Berlin, 1992 | MR
[19] Fokas A. S., Its A. R., Kitaev A. V., “Discrete Painlevé equations and their appearance in quantum gravity”, Comm. Math. Phys., 142:2 (1991), 313–344 | DOI | MR | Zbl
[20] Fokas A. S., Its A. R., Kitaev A. V., “The isomonodromy approach to matrix models in 2D quantum gravity”, Comm. Math. Phys., 147:2 (1992), 395–430 | DOI | MR | Zbl
[21] Forrester P. J., Log-gases and random matrices, Princeton Univ. Press, Princeton, NJ, 2010 | MR | Zbl
[22] Kuijlaars A. B. J., McLaughlin K. T.-R., “Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields”, Comm. Pure Appl. Math., 53:6 (2000), 736–785 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[23] McLaughlin K. T.-R., Miller P. D., “The $\overline\partial$ steepest descent method for orthogonal polynomials on the real line with varying weights”, Internat. Math. Res. Notices, 2008 (2008), Article ID rnn075, 66 pp. | MR | Zbl
[24] Pastur L., “Spectral and probabilistic aspects of matrix models”, Algebraic and Geometric Methods in Mathematical Physics, eds. A. Boutet de Monvel, V. Marchenko, Kluwer, Dodrecht, 1996, 207–242 | DOI | MR | Zbl
[25] Pastur L., “From random matrices to quasi-periodic Jacobi matrices via orthogonal polynomials”, J. Approx. Theory, 139:1–2 (2006), 269–292 | DOI | MR | Zbl
[26] Pastur L., Figotin A., Spectra of Random and Almost-Periodic Operators, Springer, Berlin, 1992 | MR
[27] Pastur L., Shcherbina M., Eigenvalue Distribution of Large Random Matrices, Amer. Math. Soc., Providence, RI, 2011 | MR | Zbl
[28] Peherstorfer F., Yuditskii P., “Asymptotic behavior of polynomials orthonormal on a homogeneous set”, J. Anal. Math., 89 (2003), 113–154 | DOI | MR | Zbl
[29] Saff E. B., Totik V., Logarithmic Potentials with External Fields, Springer, Berlin, 1997 | MR
[30] Simon B., Szego's Theorem and Its Descendants. Spectral Theory for $L^2$ Perturbations of Orthogonal Polynomials, Princeton Univ. Press, Princeton, NJ, 2011 | MR
[31] Sodin M., Yuditskii P., “Almost periodic Jacobi matrices with homogeneous spectrum, infinite-dimensional Jacobi inversion, and Hardy spaces of character-automorphic functions”, J. Geom. Anal., 7:3 (1997), 387–435 | DOI | MR | Zbl
[32] Stahl H., Totik V., General Orthogonal Polynomials, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[33] Suetin S., “On trace formulas for a class of Jacobi operators”, Sb. Math., 198:5-6 (2007), 857–885 | DOI | MR | Zbl
[34] Szëgo G., Orthogonal Polynomials, Amer. Math. Soc., Providence, RI, 1975 | MR | Zbl
[35] Teschl G., Jacobi Operators and Completely Integrable Nonlinear Lattices, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl
[36] Totik V., Weighted Approximations with Varying Weight, Lecture Notes in Math., 1569, Sprinegr, Berlin, 1994 | MR | Zbl
[37] Widom H., “Extremal polynomials associated with a system of curves in the complex plane”, Adv. in Math., 3 (1969), 127–232 | DOI | MR | Zbl